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Abstract—We address the problem of learning data-adaptive square
sparsifying transforms with a condition number constraint. We adopt an
alternating minimization (Alt. Min.) strategy and propose a projection
approach, following the transform-update step within every iteration
of Alt. Min., to enforce the condition number constraint by solving a
quadratic program. The set of updated singular values of the transform
can be expressed as an affine relaxation applied on the current ones.
The proposed approach, referred to as singular value relaxation (SVR),
is compared with two recently proposed transform learning techniques
in terms of signal sparsification performance. The experimental results
show that the transform learnt using SVR is in better agreement with
the ground-truth and leads to competitive reconstruction performance
with the state-of-the-art methods with easier tuning of parameters.

I. INTRODUCTION

The advances in compressed sensing [1]–[3] have inspired the
quest for efficient sparse representation of signals using appropriate
dictionaries or transforms. The problem of learning data-dependent
dictionaries has been addressed from three different perspectives:
(i) synthesis [4], (ii) analysis [5], and (ii) transform models [6].
The advantage of the transform model over the other two lies in
the computational simplicity of the sparse coding operation, which
reduces to applying a threshold on the transform coefficients and has
polynomial-time complexity. On the contrary, the same operation for
the synthesis and analysis models is NP-hard.

We propose an Alt. Min. strategy for learning square sparsifying
transforms with a direct control on their condition numbers. The pro-
posed algorithm involves a projection applied on the singular values
of the transform, referred to as singular value relaxation (SVR),
following the transform-update step. The projection, performed by
solving a quadratic program (QP), enforces the transform to satisfy a
given condition number constraint. Since the constraint has a direct
bearing on the condition number of the resulting transform, the SVR
algorithm does not entail significant parameter tuning effort.

II. PROBLEM FORMULATION AND THE SVR ALGORITHM

Given a training data matrix Y = {yi ∈ Rm, i = 1 : N}, the goal
is to learn a well-conditioned sparsifying transform W ∈ Rm×m such
that Wyi = xi + ξi, where xi is s-sparse and ξi is the modeling
error, for all i. The objective is achieved by solving

min
W,xi

N∑
i=1

‖Wyi − xi‖22 s.t. ‖xi‖0 ≤ s, ‖W‖F = 1, κ (W ) ≤ α, (1)

where α ≥ 1 is a constant and κ (W ) = σmax(W )
σmin(W )

, the ratio
of the maximum to the minimum singular values of W , denotes
the condition number of W . The constraints in (1) help avoid the
degenerate solution. To learn W satisfying condition number and
norm constraints, Ravishankar and Bresler [6], [7] proposed to solve
min
W,xi

∑N
i=1 ‖Wyi − xi‖22 − λ log |detW | + µ ‖W‖2F s.t. ‖xi‖0 ≤ s,

where λ and µ are appropriately chosen constants, using an Alt. Min.
strategy. In their formalism, it is difficult to determine suitable values
of λ and µ to enforce a certain condition number α on the learnt
transform. On the contrary, the optimization posed in (1) offers a
direct control on the desired condition number of the learnt transform.

To solve (1), we initialize with an estimate of W (typically the
identity matrix) and alternate between finding the best X for a given
W and vice versa. After obtaining an estimate of W , the constraint
κ (W ) ≤ α is imposed on W by solving the QP

σ̃ = arg min
sj

1

2

m∑
j=1

(sj − σj)2 s.t. s1 ≥ · · · ≥ sm ≥ 0; s1 ≤ αsm, (2)

where σ1 ≥ · · · ≥ σm, are the singular values of the current estimate
of the transform such that σ1

σm
> α. The Karush-Kuhn-Tucker (KKT)

conditions for the QP reveal that solving (2) amounts to applying an
affine relaxation of the form σ̃j = σj + νj on the current singular
values σj , to obtain the updated ones σ̃j .

After the updated estimate W̃ is obtained, an optimal rotation Q0

is applied on W̃ to minimize the error on the training set [8]:

Q0 = arg min
Q:Q>Q=I

∥∥QW̃Y −X
∥∥2

F
. (3)

Premultiplying W̃ by the orthonormal Q0 does not alter its condition
number, but reduces the sparsification error. The optimization posed
in (3) is famously known as the orthogonal Procrustes problem (OPP)
and can be solved in closed-form [9] as Q0 = RP>, where C =

PΛR> is the singular-value decomposition (SVD) of C ∆
= W̃Y X>.

In the special case where α = 1, that is, the transform matrix W is
orthonormal, one can directly solve

W = arg min
Ŵ :Ŵ>Ŵ=I

∥∥ŴY −X
∥∥2

F
, (4)

to update W , instead of solving (2) and (3) separately, since both
approaches lead to the same update as argued in the following:

Solving (4) leads to W = R1P>1 , where P1Λ1R>1 is the SVD of
Y X>. The matrix W̃ , constructed using the solution of (2), is given
by W̃ = βUV >, where β = 1

m

∑m
i=1 σi. Therefore, the matrix C =

W̃Y X> takes the form C = βUV >P1Λ1R>1 =
(
UV >P1

)
(βΛ1)R>1 ,

thereby leading to Q0 = R1P>1 V U
>. Consequently, the resulting

updated transform after solving (2) and (3) becomes W = Q0W̃ =

β
(
R1P>1 V U

>)UV > = βR1P>1 , which is same as the update obtained
from (4), up to a scale factor β. Notably, the problem of learning an
orthonormal synthesis dictionary for sparse coding was recently consid-
ered in [10] and an alternating minimization approach was proposed,
wherein the synthesis basis is updated via an OPP. The proposed SVR
approach subsumes the special case of orthogonal basis considered in
[10]. Following rotation, the transform W is rescaled to ensure that
‖W‖F = 1. The steps of SVR are summarized in Algorithm 1.

III. NUMERICAL EXPERIMENTS ON SPARSIFICATION

A. Synthetic Signals

The sparsification performance of SVR is compared with the
transform learning algorithms based on conjugate-gradient (TL-CG)
[6] and closed-form updates (TL-CFU) [7]. For a fair comparison, we
consider identical experimental settings as in [6]. A data matrix Y ,
containing N = 200 training examples, is generated by multiplying
a synthesis dictionary of size 20 × 20 with a coefficient matrix A,
having exactly four nonzero entries in every column. The synthesis



Algorithm 1 A singular-value relaxation (SVR) technique to learn a
well-conditioned sparsifying square transform W .

1. Input: Sparsity s, data matrix Y , α, and no. of iterations Jiter.
2. Initialization: Set p← 0, W (p) ← I .
3. Iterate Jiter times:
(i) Sparse coding: x(p)

i = Ts
(
W (p)yi

)
, for all i, where Ts (z)

is the hard-thresholding operation that retains the top s entries (in
magnitude) of z.
(ii) Transform estimate: W (p) ← X(p)Y †; where † is pseudoin-
verse.
(iii) Affine relaxation: If κ

(
W (p)

)
> α, compute the SVD of

W (p) = UKV T , where K = diag (σ1, · · · , σm). Calculate σ̃j
by solving (2), and construct K̃ = diag (σ̃1, · · · , σ̃m). Obtain the
updated transform W̃ = UK̃V >.
(iv) Set W (p) ← Q0W̃ , where Q0 is the solution to (3).
(v) Perform scaling W (p) ← W (p)

‖W (p)‖
F

and update p← p+ 1.

5. Output: The learnt transform W (p).

dictionary is generated by drawing samples from the N (0, 1) distri-
bution, followed by enforcing a constraint such that its inverse, the
ground-truth transform, has a condition number less than or equal to
10. The locations of the nonzero entries in the coefficient matrix are
chosen uniformly at random, and their amplitudes are drawn from
N (0, 1). The parameter α in the SVR algorithm is taken as α = 10,
same as the condition number of the ground-truth. The maximum
number of iterations is taken as Jiter = 3000. The parameters of
TL-CG and TL-CFU are fixed exactly as recommended in [6]. The
metrics for comparison are chosen to be the normalized sparsification
error, defined as ‖WY−X‖2F

‖WY ‖2
F

and the singular values (normalized by
the maximum) of the resulting transform (cf. Figures 1(a) and 1(b),
respectively). Since the training data is generated randomly, these
performance metrics are averaged over 500 trials.

We observe that the normalized sparsification error for the SVR
algorithm decays at a rate faster than TL-CG and competitive with
TL-CFU, and attains a small value (about 10−4) after 500 iterations.
The normalized singular values of the transform learnt using SVR are
in excellent agreement with those of the ground-truth transform. On
the other hand, the TL-CG and TL-CFU algorithms learn transforms
with slightly higher condition numbers.

B. Sparsifying Image Patches

Non-overlapping patches of size 8 × 8 are extracted from the
Barbara image, mean-subtracted, vectorized, and stacked as the
columns of Y . For an input image of size 512 × 512, Y contains
N = 4096 patches. As suggested in [6], the sparsity level is chosen as
s = 11. The transform to be learnt is of size 64×64 and the value of α
is chosen to be 1.1. All algorithms are iterated 100 times. The peak

signal-to-noise ratio (PSNR), defined as 20 log10

255
√
P

‖Y −W−1X‖F
dB, where P is the number of pixels in the image, is chosen as
the metric for comparison and shown in Figures 2(a) and 2(b)
corresponding to identity and random initializations, respectively. The
recovery PSNR in case of SVR increases faster than TL-CFU and
TL-CG as the iterations progress. All the three techniques were found
to be robust to initialization as the final recovery PSNR is nearly the
same for both random and identity initializations.
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Fig. 1. (Color online) Comparison of SVR, TL-CFU, and TL-CG for
noise-free data: (a) Normalized sparsification error and (b) normalized
singular values, which are almost identical for SVR and the ground-truth.
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(a) W (0)
ij ∼ N (0, 1)
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Fig. 2. (Color online) Image sparsification experiment: Recovery PSNR
versus iterations for SVR, TL-CFU, and TL-CG, corresponding to random
and identity matrix initializations.

IV. CONCLUSIONS

We have developed a new Alt. Min. algorithm for learning a data-
dependent square sparsifying transform, where a condition number
constraint is imposed by solving a QP in the singular-value domain,
following the transform-update step. The constraint can be set directly
depending on the target condition number, thereby leading to easier
parameter fixing compared with the frameworks in [6] and [7]. The
resulting SVR algorithm has a performance that is competitive with
the state-of-the-art techniques and the singular values of the learnt
transform exactly match those of the ground-truth.
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