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Abstract—In this short abstract we introduce a novel method
for tomographic reconstructions from low-dose data which is
usually noisy and has missing information. Our method is a gen-
eralization of sparsity exploiting image reconstruction methods
which employ Total Variation (TV) as an additional sparsifying
transform. Similar to state-of-the-art Non-local TV (NLTV)
method our proposed method goes beyond spatial similarity
between different regions of an image being reconstructed by
establishing a connection between similar regions in the image
regardless of spatial distance. However, it involves updating the
graph prior during every iteration and is computationally more
efficient as compared to adaptive NLTV.

Let S ∈ <p×q be the sinogram corresponding to the
collected tomographic projections of the sample X ∈ <n×n

being imaged, in a typical computed or electron tomography
setup. Let p denote the number of rays passing through X
and q the number of angular variations at which X has been
imaged. Let b ∈ <pq be the vectorized measurements or pro-
jections (b = vec(S)), where vec(·) denotes the vectorization
operation and A ∈ <pq×n2

be the sparse projection operator.
Then, the goal of a tomographic reconstruction method is
to recover the vectorized sample x = vec(X) from the
projections b.

Sparsity exploiting methods, such as Compressed Sensing
(CS) have been frequently used with Total Variation (TV)-
based regularization CSTV [1] to efficiently solve such ill-
posed problems. Recently, non-local TV (NLTV) [2], which
exploits pairwise similarity between the different regions of the
sample by constructing a sparse or dense graph G, has proven
to be a much more efficient alternative for TV. However, it
is computationally expensive and the graph G is kept fixed
throughout the algorithm.

Proposed Optimization Problem: We propose to combine
the CS setup with a non-local but adaptive and scalable graph
TV as follows:

min
x
‖Ax− b‖22 + λ‖Φ∗(x)‖1 + γ‖∇G(x)‖1, (1)

where Φ is the wavelet operator and Φ∗(x), where ∗ represents
the adjoint operation, denotes the wavelet transform of x and
‖∇G(x)‖1 denotes the total variation of x w.r.t graph G. The
graph G is constructed initially between the pixels of the
vectorized Filtered back Projected (FBP) xfbp ∈ Rn2

estimate
of the sample x, using the standard K-nearest neighbors
strategy [3]. The construction of G is highly scalable due to
the use of fast K-nearest neighbor search library (FLANN)
[4], which reduces the complexity of graph construction from
O(n4) (for NLTV) to O(n2 log(n)) for our method.

Adaptive Algorithm: As x is being refined in every
iteration, it is natural to update the graph G as well in

every iteration. This simultaneous update of the graph G
corresponds to the adaptive part of the proposed algorithm
and its significance has been explained in detail in the arxived
full text [5]. We call our method as ‘Adaptive Compressed
Sensing and Graph TV’ (ACSGT).

The first two terms of the objective function above comprise
the sparse reconstruction part of our method and model the
sparsity of the wavelet coefficients. The second term, to which
we refer as the graph total variation (GTV) regularizer acts
as an additional prior for denoising and smoothing. It can be
expanded as:

‖∇G(x)‖1 =
∑
i

‖∇Gxi‖1 =
∑
i

∑
j

√
Wij‖xi − xj‖1,

where W is a sparse weight matrix characterizing the K-
nearest neighbors graph G, which is constructed using a
Gaussian kernel, i.e, Wij = exp(−‖xi−xj‖2/σ2). The above
expression clearly states that GTV involves the minimization
of the sum of the gradients of the signals on the nodes of
the graphs. As compared to standard TV, the structure of
the sample x is taken into account for reconstruction. It is
a well known fact that l1 norm promotes sparsity, so the GTV
can also be viewed as a regularization which promotes sparse
graph gradients. This corresponds to enforcing a piecewise
smoothness of the signal x w.r.t graph G [5].

The complete algorithm and various tuning parameters to
solve the optimization problem (1) can be found in Algorithm
1 in the full text of this abstract [5].

Results and Conclusions. Fig. 1 shows results and a
comparative analysis of reconstructing a 64×64 Shepp-Logan
phantom corrupted by 10% Poisson noise, from a sinogram of
size 36×95 using various methods. The compared methods in-
clude Filtered Back Projection (FBP), statistical reconstruction
algorithms such as Compressed Sensing (CS), Compressed
Sensing and Total Variation (CSTV) [2], Compressed Sensing
and Graph TV (CSGT) which is a non-adaptive version
of our algorithm, our proposed adaptive algorithm ACSGT
and iterative algorithms such as Kaczmarz method (ART),
Randomized Kaczmarz method, Cimmino’s method (SIRT)
and SART. The quality of reconstructed phantom and intensity
plots show that our method out-performs all others because it
goes beyond spatial similarity between different regions of
an image being reconstructed by establishing a connection
between similar regions in the image regardless of spatial
distance. For details of experimental setup and other datasets
please refer to the full text [5].
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Fig. 1: Comparative analysis of reconstructing Shepp-Logan using various reconstruction methods. The sinogram of a 64 × 64 Shepp-
Logan phantom corrupted with 10% Poisson noise was reconstructed using FBP (Linearly interpolated, Cropped Ram-Lak filter); ART
(Kaczmarz/Randomized Kaczmarz, Relaxation Parameter (η) = 0.25, Prior: FBP, Stopping Criteria = 100 iterations); SIRT (Cimmino/SART,
(η) = 0.25, Prior: FBP, Stopping Criteria = 100 iterations); CS (500 Iterations, Prior: FBP); CSTV (λ = 0.5, γ = 0.1, Prior: FBP, Stopping
Criteria = 100 iterations); CSGTV (λ = 0.5, γ = 0.2, Prior: Graph from FBP, Stopping Criteria = 100 iterations); ACSGT (λ = 0.5, γ = 1,
Prior: Patch Graph from FBP updated every iteration, I and J in Algorithm 1 set to 30). ACSGT clearly gives a better intensity profile as
compared to all other methods while preserving the edges.
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