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Abstract—A fast Compressed Sensing (CS) reconstruction scheme for
parallel MRI is proposed, utilizing the hybrid “SPID” technique. The
proposed method utilizes SPID for calculating the Stationary Wavelet
Transform (SWT) of the unknown MR image from the undersampled k-
space data; subsequently, it recovers the image through a CS process that
promotes joint sparsity of the multi-coils data. In-vivo experiments show
that this method eliminates artifacts and expedites the CS convergence.

I. INTRODUCTION

Combining the two powerful frameworks of Compressed Sensing
(CS) and parallel MRI (pMRI) has recently emerged as a promising
approach for MR image reconstruction and scan time reduction
[1]-[3]. However, the practical application of CS-pMRI methods is
limited by their long runtimes and heavy computational burden [1].
In some methods, the long runtime may be related to the redundant
parallel application of CS to each channel separately, as well as to
the low-quality initial guess.

Here, a fast single-image CS-pMRI reconstruction scheme is
proposed, utilizing the hybrid pMRI technique “SPID” (Sensitivity
Profile Indexing and Deconvolution) [4]. The proposed method ini-
tially calculates the 1D Stationary Wavelet Transform (SWT) of the
unknown image using “SPID”, then produces a high-quality initial
guess, and finally recovers the image through a convex optimization
process with multi-coil joint sparsity promotion. This method is
therefore referred to herein as WaveSPID-CS.

II. THEORY

1) Initial guess calculation. SPID is a hybrid non-iterative pMRI
technique [4]; uniquely, it receives sub-sampled k-space data and
calculates the full xy-domain 1D convolution between the unknown
MR image f(x,y) and a known user-defined kernel g(z), i.e

h(z,y) = f(z,y) * g(z). M

Generally, the SPID method is based on the following process:
first, the desired g(z) function is defined by the user; for example, it
can be a Gaussian function. Second, a set of weights W is obtained
for every zo in the image by solving the linear system:
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where C}; is the sensitivity map of coil 4. Finally, the convolution
image h(zx,y) is calculated pixel-wise by
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where S;(kz, kyo) is the signal acquired by coil ¢ and F' is the 1D
Fourier transform operator. A more detailed description of SPID can
be found in [4].

In the proposed method, SPID is applied twice with two kernels
representing the first-level Low-Pass (LP) and High-Pass (HP) SWT
decomposition filters of a specific wavelet, e.g. Daubechies-2. This
results in the two convolution images:

W (z,y) = fla,y) * g™ (), "V (x,y) = f(z,y) *g"" (2).

Then, f(z,y) is reconstructed according to the wavelet filter bank
theory, by simply summing these images [5]:

FIEP (@, y) = 5P (2, y) + BT P (2, y). )

2) CS reconstruction. Subsequently, f°77P (x,y) is used as an

initial guess for a CS process that recovers f(z,y) by solving the
convex optimization problem
PC;f =b;

minimizes|| ¥ fll1  s.t. Vi=1,..,N. (5

where W is the SWT operator, ® is an operator representing the 2D
Fourier transform and undersampling, and b; is a vector of coil ¢
samples. Notably, the CS process of eq. (5) promotes joint sparsity
of the multi-coils data in the SWT domain; it also recovers a single
image rather than a set of coil-specific sensitivity-weighted images.

III. METHODS & MATERIALS

WaveSPID-CS was applied to in-vivo T2* data acquired at 7T
using 32 coils. k-Space was undersampled with an acceleration
factor of R = 4. The SWT filters corresponded to Daubchies-2
wavelets, and eq. (5) was solved using the Projection Onto Convex
Setd (POCS) method. For comparison, the same CS-POCS method
was also impelemented with a conventional initial guess obtained
from zero-flling k-space, hence implementing the method of [6].
Reconstructions were compared to a fully-sampled gold standard by
the Normalized Root Mean Square Error (NRMSE) measure.

IV. RESULTS & DISCUSSION

In-vivo results (Fig. 1) show that the aliasing present in the
conventional CS initial guess (Fig. 1a) is absent from the proposed
WaveSPID-CS initial guess (Fig. 1b). Furthermore, WaveSPID-CS
accelerated the CS process: it converged rapidly within 11 iterations
only, while the method of [6] converged after 45 iterations (Fig. 2).
The proposed method therefor eliminates artifacts and expedites the
CS-pMRI reconstruction.



(a) Method [6] initial guess (b) Proposed method initial guess

(c) Method [6] after 5 iters. (d) Proposed method after 5 iters.

(e) Method [6] after 45 iters.

(f) Gold standard (full k-space)

Fig. 1: Reconstruction results for k-space data obtained in a T2* 7T
scan, undersampled with a reduction factor of R = 4, . Left column
(a,c,e): reconstructions obtained using the CS-pMRI method of [6],
which includes k-space Zero Filling; arrows point to artifacts. Right
column (b,d): reconstructions obtained with the proposed WaveSPID-
CS method. (f) Gold standard image calculated from the fully
sampled k-space.
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Fig. 2: Reconstruction NRMSE as a function of CS iteration number,
for the method of [6] (gray) and the proposed method (black).
The circular markers designate the iteration in which each process
convergenced. Note the rapid convergence of the proposed method.
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