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I. INTRODUCTION

One analytical technique for assessing the health of a structure
such as a building or bridge is to estimate its mode shapes and
frequencies via vibrational data collected from the structure. A change
in a structure’s modal parameters could be indicative of damage. Due
to the considerable time and expense required to perform manual
inspections of physical structures, and the difficulty of repeating
these inspections frequently, there is a growing interest in developing
automated techniques for structural health monitoring (SHM) based
on data collected in a wireless sensor network (WSN) [1], [2], [3].

In order to save energy and extend battery life, it is desirable to
reduce the dimension of data that must be collected and transmitted
in the WSN. In recent work [4], Park et al. provided a rigorous
analysis of a singular value decomposition (SVD) based technique
for estimating the structure’s mode shapes in free vibration without
damping. As a means of compression, this work considered both
random sampling in time and multiplication by random matrices.
While promising, the SVD-based algorithm requires orthogonality of
the mode shapes and offers only approximate, not exact recovery.

Recently, atomic norm minimization (ANM) based approaches
for line spectrum estimation have been shown to be efficient and
powerful for exactly recovering unobserved samples and identifying
off-grid frequencies in both single measurement vector (SMV) [5],
[6] and multiple measurement vector (MMV) [7], [8] scenarios. In
particular, theoretical guarantees have been established for random
sampling in time when the sampling times are synchronous [7]
and asynchronous [8] across the sensors. However, these guarantees
assume randomness of the mode shapes, which is not physically
plausible. Moreover, these guarantees suggest that sample complexity
per sensor will increase as the the number of sensors increases, which
is both undesirable and contrary to intuition.

In this work, we consider the modal analysis problem when data
is compressed at each sensor via multiplication by a random matrix.
We show that ANM can perfectly recover modal parameters even
when the mode shapes are not orthogonal. We provide new theoretical
analysis on the sample complexity of this scheme. In particular, our
theory does not require randomness of the mode shapes, and it shows
that the sample complexity per sensor will decrease as the the number
of sensors increases. Our theory can be interpreted as an extension
of the SMV treatment in [6] to the MMV scenario.

II. PROBLEM FORMULATION

We consider the vector-valued analytical signal as in [4]

x?(t) =

K∑
k=1

Akψ
?
ke
j2πFkt,

which is a superposition of K complex sinusoids at each sensor.
Here, Ak ∈ C, Fk ∈ R and ψ?k ∈ CN are the complex amplitudes,
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frequencies and normalized mode shapes, respectively, and N is the
number of sensors. Taking evenly spaced Nyquist samples with Ts ≤

1
2max{Fk}

at times t1, t2, . . . , tM , we can form an M×N data matrix
X? = [x(t1) · · ·x(tM )]>, which can be written as a superposition

X? =

K∑
k=1

|Ak|a(Fk)ψ>k , (1)

where the atoms a(f) = [ej2πFt1 , · · · , ej2πFtM ]>, ψk = ψ?ke
jφk ,

and φk is the phase of the complex amplitude Ak.

III. RANDOM TEMPORAL COMPRESSION

Let x?n be the nth column of the data matrix X? (corresponding to
the raw data at sensor n), and consider the compressive measurements

yn = Φnx
?
n, n = 1, . . . , N.

Here, each Φn ∈ RM
′×M is a Gaussian random matrix. From these

measurements, we can recover the original data matrix X? and the
modal parameters via the ANM program

X̂ = argmin
X
‖X‖A s.t. yn = Φnxn, n = 1, . . . , N. (2)

since only a few atoms are used to represent the data matrix in (1).
Here, ‖X‖A is the atomic norm induced by the atoms a(f)ψ> [5].

Theorem III.1. Let Φ = [Φ1,Φ2, · · · ,ΦN ] ∈ RM
′×MN be a

random matrix with i.i.d. zero-mean, unit variance Gaussian entries.
Assume that the true frequencies satisfy the minimum separation
condition in [5]. Then, there exists some constant C such that X? is
the unique optimal solution of (2) with probability at least 1− δ if

M ′ ≥ max

{
8

N
log

(
1

δ

)
+ 2, CK log(M)

}
, (3)

and we can exactly recover the frequencies and mode shapes up to
a phase ambiguity.

This result, which does not impose any randomness assumption on
the mode shapes, indicates that the number of measurements needed
from each sensor scales with K log(M) and that the probability of
exact recovery increases as the number of sensors N increases. For
more details and proofs, please refer to our manuscript [9].

Simulation results are presented in Figures 1, 2 and 3 to verify our
theory. For joint recovery (solid lines), it can be seen in Figures 1
and 2 that the probability of successful recovery does increase
as the number of sensors increases; alternatively, the number of
measurements needed for perfect recovery will decrease as we have
more sensors. We also show the recovery performance using ANM
separately at each sensor (dashed lines), to illustrate the advantage
of joint recovery. Finally, it is shown in Figure 3 that the sample
complexity M ′ scales linearly with the number of active modes K
as is indicated in Theorem III.1.

At the workshop, we will discuss this result in more depth as
well as survey the different compression strategies and compare with
results from [7], [8].
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Fig. 1. Random temporal compression: recovery of data matrix via joint
ANM (solid lines) and separate ANM (dashed lines). We take M ′ =
[3, 5, 7, 9, 11, 15, 20, 25, 30] measurements per sensor and perform
500 trials with random mode shapes. The true frequencies are set as F1 = 2,
F2 = 10, F3 = 20 Hz, which are well separated. The amplitudes are
set as A1 = 1, A2 = 2, A3 = 3. The raw data consists of M = 100
uniform samples taken with a sampling rate of 100 Hz before compression.
For separate recovery, we recover each column of the data matrix separately
as in the SMV case. Different labeled curves correspond to different numbers
of sensors N .
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Fig. 2. Random temporal compression: recovery of mode shapes via joint
ANM (solid lines) and separate ANM (dashed lines). The problem parameters
as the same as in Figure 1.
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Fig. 3. Random temporal compression: the probability of successful recovery
for mode shapes with ANM when N = 10 is fixed. We set M ′ = 4 : 4 : 80,
K = 2 : 2 : 20 and perform 10 trials for each M ′ and K. For each sparsity
level K, we randomly pick K normalized frequencies from a frequency set
F = 0.03 : MinSep : 0.99, where MinSep = 2/M denotes the minimum
separation. The amplitudes Ak, k = 1, . . . ,K are set as K random numbers.
M = 100 uniform samples are taken with a sampling rate of 100 Hz before
compression.
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