
Joint Multicontrast MRI Reconstruction
Lior Weizman ∗, João F. C. Mota †, Pingfan Song ‡, Yonina C. Eldar∗, and Miguel R. D. Rodrigues‡

∗ Department of Electrical Engineering, Technion — Israel Institute of Technology, Israel
Email: weizmanl@tx.technion.ac.il, yonina@ee.technion.ac.il

† Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, UK Email: j.mota@hw.ac.uk
‡ Department of Electronic and Electrical Engineering, University College London, UK Email: {pingfan.song.14,m.rodrigues}@ucl.ac.uk

Abstract—Joint reconstruction is relevant for a variety of medical
imaging applications, where multiple images are acquired in parallel or
within a single scanning procedure. Examples include joint reconstruction
of different medical imaging modalities (e.g. CT and PET) and various
MRI applications (e.g. different MR imaging contrasts of the same
patient). In this paper we present an approach for joint reconstruction
of two MR images, based on partial sampling of both. We assume each
MR image has a limited number of edges, that is, low total variation,
but they are similar in the sense that many of the edges overlap. We
examine synthetic phantoms representing T1 and T2 imaging contrasts
and realistic T1-weighted and T2-weighted images of the same patient. We
show that our joint reconstruction approach outperforms conventional
TV-based MRI reconstruction for each image solely. Results are shown
both visually and numerically for sampling ratios of 4%-20%, and consist
of an improvement of up to 3.6dB.

I. INTRODUCTION

Sparsity-based reconstruction of magnetic resonance imaging
(MRI) exploits prior assumptions on the nature of the data, to
overcome imaging artifacts due to insufficient sampling. In many
cases, we can utilize similarity to a fully sampled reference image,
e.g. an existing scan in a series of MR images [1]. This reference-
based MRI [2] approach has been proven to significantly decrease the
number of measurements required for successful reconstruction [3],
in comparison to other compressed sensing [4], [5] based methods.
However, when two MRI images are acquired in the same scan,
we can benefit further by exploiting their similarity to reduce the
sampling ratios [6]. As images of the same patient have similar spatial
characteristics [7], these can be used to perform high quality joint
reconstruction of both undersampled images.

In this paper, we focus on joint reconstruction of two different
MR imaging contrasts of the same patient [8], [9]. We exploit the
similarity between the gradients of the different imaging contrasts, on
top of the well known total variation transform for each image. One
of our novelties is the implementation via a re-weighting scheme. It
improves support estimation [10] and allows handling cases where
edges do not overlap, due to mis-registration or pathologies seen only
in a single modality. It leads to an improvement of up to 3.6dB vs.
state-of-the-art MRI reconstruction performed solely on each image.

II. METHOD

In the joint reconstruction problem our goal is to reconstruct
two 2D images of size N × N , X1 and X2, from their unde-
sampled measurement vectors, y1 and y2. Since in MRI data is
sampled in the spatial Fourier domain (a.k.a k-space), we denote
by Fu : CN×N → C1×M an undersampled Fourier transform, where
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M < N2. In addition, we define: X = [X1,X2], Y = [y1,y2]
and Fu{X} = [Fu{X1},Fu{X1}]. We reconstruct X from Y by
solving the following unconstrained problem:

min
X
‖Fu{X} −Y‖22︸ ︷︷ ︸

term 1

+λ1 (TV(X1) + TV(X2))︸ ︷︷ ︸
term 2

+

+ λ2 (‖W1 � (Gx{X1 −X2})‖1 + ‖W2 � (Gy{X1 −X2})‖1)︸ ︷︷ ︸
term 3

,

(1)
where TV denotes the total-variation operator [11], Gx{·} and
Gy{·} are gradient operators along the rows and column of a
2D image, respectively, and � denotes the hadamard product. In
(1), term 1 enforces consistency with the measurements, term 2
enforces minimum on the total variation of each image, and term 3
enforces similarity between the gradient images, which expected to be
similar since difference imaging contrasts exhibit similar structures.
The parameters λ1,2 are regularization parameters that control the
contribution of each term to the minimization problem, and W1,2

are weighting matrices that enhance the support estimation of the
elements in term 3, updated iteratively [10]. The weighting scheme
also helps in neglecting areas where edges in two different imaging
contrasts do not overlap. In our experimental results, we solved Eq.
(1) by SFISTA [12].

III. RESULTS

Our joint reconstruction approach has been tested on purely
synthetic phantoms representing T1 and T2 MRI contrasts and on two
imaging slices taken from two different MRI contrasts (T1 and T2) of
the same subject. Data was retrospectively undersampled randomly
(using 4% and 20% of the samples for the phantom and the real
data experiments respectively) in the k-space domain using polyno-
mial variable density probability density function. Different random
sampling patterns were generated for each image. For comparison
purposes, we compared our joint reconstruction approach to TV-based
reconstruction (i.e., solving Eq. (1) without term 3) [11]. To quantify
the quality of image reconstruction, we computed the PSNR of each
reconstruction, defined as: 20log10((1/N

2) ·‖Xi−X̂i‖F ) where X̂i

and Xi represent reconstructed and fully sampled images.
Figures 1 and 2 show the results. It can be seen that joint

reconstruction outperforms conventional TV-based reconstruction,
that does not exploit similarity in structures between images. Our
aproach leads to an improvement of 1.8dB-3.7dB, and provides better
recovery in regions with slow varying grey-levels and fine structures.

IV. CONCLUSION

In this paper we show the benefit in utilizing structural similarity
between different MRI imaging contrasts, via adaptive weighted
reconstruction. Future work will consist of examining the proposed
approach on different medical imaging modalities (e.g. PET and CT).
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Fig. 1. Phantom results: Joint reconstruction vs. TV-based reconstruction.
Gold standard T1 and T2 images are based on Shepp-logan phantom.
Reconstruction results are shown in a zoomed region (the dashed rectangle on
the gold standard). It can be seen that joint reconstruction outperforms TV-
based reconstruction and exhibits much less imaging artifacts and improved
PSNR values
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Fig. 2. Real data results: Joint reconstruction vs. TV-based reconstruction.
Gold standard T1 and T2 images were taken from a clinical MRI study.
Reconstruction results are shown in a zoomed region (the dashed rectangle
on the gold standard). It can be seen that joint reconstruction exhibits better
reconstruction of small scale structures (pointed by arrows) vs. TV-based
reconstruction, and provides improved PSNR values
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