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Abstract—In the real world, current Blind Source Separation (BSS)
methods are limited since extra instrumental effects like blurring have not
been taken into account. Therefore, a more rigorous BSS has to be solved
jointly with a deconvolution problem, yielding a new inverse problem:
deconvolution BSS (DBSS). We introduce an innovative DBSS approach,
called DecGMCA, which is based on sparse signal modeling and an
efficient alternative projected least square algorithm. Numerical results
demonstrate the performance of DecGMCA and highlight the advantage
of jointly solving BSS and deconvolution instead of considering these two
problems independently.

I. INTRODUCTION

In many multichannel or multi-wavelength imaging applications, it
is of great interest to identify and extract the characteristic spectra of
sources when they are blindly mixed in the observation. This leads to
the study of the Blind Source Separation (BSS) problem. BSS alone
is a complex non-convex inverse problem. However, this problem
becomes even more challenging when the data are not fully sampled
or blurred due to the Point Spread Function (PSF). Therefore, we have
to jointly solve both a deconvolution and a BSS problem, yielding a
Deconvolution Blind Source Separation (DBSS) problem. Suppose
we are given Nc channels of observation {yi}1≤i≤Nc and each
observation is assumed to be a linear mixture of Ns ≤ Nc sources
{sj}1≤j≤Ns . Besides the mixing stage, the observations are degraded
by a linear channel-dependent operator H = [ht1,h

t
2, · · · ,htNc ]

t, and
in most cases this convolutive operator is accessible. More precisely,

∀ν ∈ {1, 2, · · · ,Nc}, yν = hν ∗

(
Ns∑
j=1

Aν,jsj

)
+ nν , (1)

where the mixing matrix A quantifies the contribution of a source
in the mixture and {nν}1≤ν≤Nc denotes the contaminated noise. By
applying a Fourier transform, our problem can be more conveniently
described in the Fourier domain:

∀ν ∈ {1, 2, · · · ,Nc}, ŷν = ĥν �

(
Ns∑
j=1

Aν,j ŝj

)
+ n̂ν , (2)

where � denotes the Hadamard product. More precisely, at frequency
k of channel ν, the observation Ŷ satisfies:

Ŷν,k = Ĥν,kaν ŝ
k + N̂ν,k. (3)

where aν denotes a row vector at channel index ν and ŝk denotes a
column vector of Fourier components of all sources at position k.

II. ALGORITHM

The GMCA algorithm [1] is an efficient BSS method taking
advantage of morphological diversity and sparsity in a transformed
space. In the spirit of GMCA, our proposed Deconvolution GMCA
(DecGMCA) aims at solving the minimization problem as follows:

min
S,A

1

2

Nc∑
ν

Np∑
k

||Ŷν,k − Ĥν,kaν ŝk||22 +
Ns∑
i

λi||siΦt||0, (4)

where siΦ
t corresponds the coefficient of the source i in the sparse

representation Φ.
In the spirit of BCR [2], the original problem can be split into

two alternating solvable convex sub-problems: estimating Ŝ and
estimating A, which can be solved by a projected alternating least-
squares algorithm. In the estimate of Ŝ, we propose resorting to
a Tikhonov regularization of the least-square estimate in Fourier
space to stabilize the multichannel deconvolution step. Then we apply
sparse thresholding to retrieve a clean estimate of Ŝ. This procedure,
as it performs regularization in both the Fourier and wavelet spaces,
can be interpreted as a multichannel extension of the ForWaRD
deconvolution method [3].

Such a projected regularized least-square source estimator is mo-
tivated by its lower computational cost. This estimator does not,
however, provide an optimal estimate of the sources when the
separation process is robust. Thus, in the last step of the algorithm, the
estimate of Ŝ is properly solved with a minimization method based
on the Condat-Vu splitting method ( [4], [5]). The full algorithm is
presented in alg.1.

III. EXPERIMENT

In order to emphasize the advantage of jointly solving both the
deconvolution and BSS, we compare our DecGMCA algorithm with
a different approach (ForWaRD+GMCA): a channel by channel de-
convolution using ForWaRD followed by BSS. Suppose we have three
astrophysical sources (left column of fig.1), whose spectra generally
respect power law with specific indices. In radio interferometer, the
PSF is varying along with channels. We assume the resolution of the
PSF decreases linearly with channel index (20 channels in total). The
observation, which resides in Fourier space, is not fully sampled, with
a percentage of active data 50% (see fig.2). In addition, the Gaussian
noise level is fixed to 60 dB.

Having applied DecGMCA, we can see that recovered sources
presented in the middle column of fig.1 are well deconvolved and
separated. However, if we apply ForWaRD+GMCA, in the right
column of fig.1 we observe that the sources cannot be recovered
properly and the result is biased. Furthermore, by quantifying errors
between estimated sources and ground-truth sources, we can see in
tab.I that DecGMCA is very accurate which shows that our estimated
sources have a good agreement with the ground-truth. This is owing
to the fact that DecGMCA takes into account the entire information of
the data, resulting that the relatively bad PSF can be compensated by
the relatively good PSF, which is not the case of ForWaRD+GMCA.

IV. CONCLUSION

We proposed an innovative algorithm Deconvolution GMCA
(DecGMCA) to solve the DBSS problems. DecGMCA benefits from
sparse signal modeling and a novel projected least-squares algorithm.
Numerical experiments show the advantage of the joint resolution of
both the deconvolution and unmixing problems.



Fig. 1. Illustration of DecGMCA applied on astrophysical images. The raw data is blurred by the masked PSFs and contaminated by the noise: the resolution
of the PSF is linearly declined along 20 channels. The ratio between the FWHM of the best PSF and that of the worst PSF is equal to 1/3. PSFs are masked
with percentage of active data=50% and the SNR is 60 dB. We apply DecGMCA to separate and recover sources. Left column: Ground-truth of three sources
from top to bottom. Middle column: Estimate of three sources by using DecGMCA from top to bottom. Right column: Estimate of three sources by using
ForWaRD+GMCA from top to bottom.

Algorithm 1 Deconvolved-GMCA (DecGMCA)

1: Input:Ŷ, Ĥ, λ(0), ε(0)

2: Initialize A(0)

3: for i = 1, . . . ,Ni do
4: for k = 1, . . . ,Np do

5: ŝk =

(
Nc∑
ν

(
Ĥν,kaν

)t (
Ĥν,kaν

)
+ ε′IN

)−1 Nc∑
ν

Ĥν,kŶν,ka
t
ν

6: end for
7: S(i) = Re(FT−1(Ŝ(i)))
8: for j = 1, . . . ,Ns do
9: αj = Th

λ
(i)
j

(s
(i)
j Φt)

10: s
(i)
j = αjΦ

11: end for
12: for ν = 1, . . . ,Nc do

13: aν =

( Np∑
k

Ĥν,kŶν,k
(
ŝk
)∗)( Np∑

k

(
Ĥν,kŝ

k
) (
Ĥν,kŝ

k
)∗)−1

14: end for
15: end for
16: • Last step to ameliorate the estimate S

17: S = argminS
1
2

Nc∑
ν

Np∑
k

||Ŷν,k − Ĥν,kaν ŝk||22 +
Ns∑
i

λi||siΦt||0
18: return A,S

TABLE I
COMPARISON OF RELATIVE ERRORS BETWEEN DECGMCA AND

FORWARD+GMCA

Sources DecGMCA ForWaRD+GMCA
1 0.14% 54.74%
2 0.27% 1279.21%
3 0.36% 30.12%
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[5] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involving
cocoercive operators,” Advances in Computational Mathematics, vol. 38,
no. 3, pp. 667–681, 2013.


