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Recursive neural networks (RNNs) are becoming an increasingly
important part of the machine learning toolbox [1], [2], [3] in
applications such as video [4], audio [5], EEG data [6]. These
networks have been used as either stand-alone tools for training
classifiers, or as in layers in conventional deep neural networks to
expand their use to time-varying data [7], [5], [6]. Mathematically,
RNNs are a state of M nodes x ∈ RM that evolve as

xn = f(Wxn−1 +Zsn + ε),

where W ∈ RM×NM is the recurrent connectivity matrix, sn ∈ RL

is the input into the network at time n, Z ∈ RM×L is the feed-
forward connectivity matrix, ε ∈ RM is a network error vector, and
f(·) : RM → RM is a potential point-wise non-linearity. The short-
term memory (STM) of RNNs is loosely defined as the number of
past inputs sn whose information is present in the network state. As
the abilities of RNNs to process temporal data are often attributed to
RNNs accumulating information from input data over time into the
network nodes (the STM), here we analyze the ability of RNNs to
store inputs in the network state. In particular, since many real-world
signals have low-dimensional representations, we study the STM of
RNNs when the inputs are either sparse in a basis (e.g. audio or video
signals), or where the input vectors are correlated such that they form
low-rank martix (e.g. two-photon microscopy)

STM of randomly connected networks have been analyzed with a
number of methods, including nonlinear networks [8], [9], [10], [11],
[12] and linear networks [1], [13], [14], [15], [16], [17] with both
discrete-time and continuous-time dynamics. These methods can be
broadly be classified as either correlation-based methods [14], [15]
or uniqueness methods [1], [18], [13], [17]. Traditional analyses of
STM or RNNs focus on the case where W is a random orthogonal
matrix, Z is random and the network is linear (i.e. f(x) = x). These
analysis typically assumed that L = 1 and that no additional statistics
were known about the inputs sn, resulting in the STM bound where
the number of inputs that could be remembered N is bounded by
the number of nodes M . More recently, STM analysis have been
taking into account the statistics of the inputs s. Specifically, when
the vector of inputs (L = 1) is K-sparse, the number of nodes needed
to recover N inputs scales with K log(N) < N nodes [16], [17].

These results, based on the ideas of compressive sensing, have
only addressed the case where one input at each time is input into
the network and that the inputs were K-sparse. In many machine-
learning applications, however, inputs are multi-dimensional, and
can admit other low-dimensional structures outside of sparsity. For
example, when each of the N L-dimensional inputs are stacked as
a vector, that vector can be considered as sparse (in a spatio-input
dictionary), however if the vectors sn are concatenated into a matrix
S = [s1, . . . , sN ], that matrix might be low rank (i.e the L input
streams are linearly correlated). In this work, we extend the results

in [17] to both these cases. We first show that RNNs can store a large
number of inputs that are joint sparse (LN > M ), and then show
that similar bounds hold for low-rank inputs.

To show these STM bounds, we follow the strategy of [17], using
the tools of [19], [20] to prove that the past N length- L input vectors
are recoverable from the network state at time N . For joint-sparse
inputs, we show that the network dynamics satisfy the restricted
isometry property (RIP). This property ensures that the network state
approximately preserves differences between K-sparse input streams.
Specifically, if the number of nodes in the network exceeds

M ≥ CK
δ2
µ2
S (Ψ) log5 (NL) log(η−1),

where δ is the RIP constant, C is a universal constant, Ψ is the
sparsity basis for the inputs, and µ(·) is the coherence parameter
measuring how different the columns of Ψ are from Fourier vectors,
then with probability exceeding 1− η, the inputs are recoverable via
a LASSO procedure up to an error given by

‖S − Ŝ‖F ≤ α‖ε‖2 + β
‖ (S − SK) ‖1√

K
,

for constants α and β, and where SK is the best K-term approxi-
mation of S.

For low-rank inputs, i.e. S = QV , where Q ∈ RL×R and
V ∈ RR×N , we require a different technique, instead directly show-
ing that a solution to the KKT equations holds for a nuclear-norm
optimization program. Specifically, generalise the golfing scheme
in [21] to prove the existence of a solution. We thus show a similar
STM bound to the joint-sparse case, where for rank-R S, if

M ≥ CR
(
N + µ2

LL
)
log3(NL),

for a universal constant C and coherence parameter µL measuring
how different the columns of the right low-rank decomposition
matrix, V , are from Fourier vectors, then the inputs are recoverable
with high probability up to an error

‖Ŝ − S‖F ≤

(
4

√
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2LN +M

M
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)
ε.

This work leverages the tools developed in the compressive sensing
literature to develop a theoretical understanding of RNNs, an impor-
tant tool in machine learning. Our results, taken together, demonstrate
that RNNs are very efficient in compressing long input streams
into the network state. In both cases, the compression rate (how
many inputs can be recovered from M nodes) is proportional to
the underlying dimension of the inputs (the sparsity or rank), and
only poly-logarithmic with the total number of inputs (LN ). In
terms of machine-learning tasks, this means that RNNs operating on
structured, dynamic signals have access to long extents of the data
history to make classification or prediction decisions.
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Fig. 1. (a) Network architecture for RNNs with sparse inputs and lowr-rank inputs. (b) Empirical relative mean-squared error (rMSE) calculated for a variety
of parameter values (input sparsity and number of nodes) shows that the network state can recover inputs from many fewer nodes than predicted by theory
that does not leverage the input statistics. Each pixel represents the average rMSE of 20 random trials with L = 40 and N = 100. (c) Similar results to (b)
show that the recovery guarantees also hold for low-rank input statistics.
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