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Abstract—In this work, we present several variations of
the fusion of sparsity-based reconstructions. The method ex-
ploits TV-sparsity to obtain multiple estimators of the origi-
nal image, that are then aggregated using specific strategies.
We tested the technique for denoising of microscopic images.

I. Generation of multiple sparsity-based estimators
In the case of microscopic images, information concerning

details of the structures is located in the high-frequency Fourier
coefficients which are much more degraded by noise than the
low-frequency coefficients which encode structural information
of the objects inside the image [1].
We consider a dense low-pass sampling in the Fourier domain

(selection of all the coefficients with frequency ν < νc), com-
pleted with a random sampling of high-frequency coefficients,
with an overall sampling rate of τ ∈ [0, 1] (see [2]). Denote by
Φk the corresponding sampling matrix.
From the single noisy observation y, we generate R sets of

partial estimators x̂k, solving the following Total Variation-
based convex optimization problems:

x̂k = arg min
x∈RN

‖x‖TV s.t. ‖Φkx− yk‖2 ≤ ε (1)

where yk = Φky and ε is a noise-dependent parameter defined
in [3]. In this equation, σn represents the standard deviation of
the additive Gaussian component of the noise, and γε is a gain
that we introduce to handle specific image types.
We can immediately define the following pixel-wise statistics

over the R reconstructions:

x̂mean(s) = 1
R

R∑
k=1

x̂k(s)

x̂var(s) = 1
R− 1

R∑
k=1

(x̂k(s)− x̂mean(s))2

where x̂var is called the variance map.

II. Fusion of sparse reconstructions
Fusion of partial operators is tested for image enhancement

and denoising. We test three fusion operators based in space or
Fourier domain, each of them pursuing different purposes.

A. Linear Weighted Combination with Variance map
As used in [4], the Linear Weighted Combination (LWC)

fusion technique combines simple averaging of the estimators
with spatial localization of reconstructions given by the vari-
ance map. This estimator is defined as:

x̂LWC(s) =
√
x̂var(s) ◦ H (y(s)) +

(
1−

√
x̂var(s)

)
× x̂mean(s)

(2)

where y is the noisy observation, and H is a local filter (e.g. me-
dian filter, edge-enhancement filter, etc.). This fusion operator
bears some similarity with the Lee filter [5].

B. Exponentially Weighted Aggregate
In [6], Exponentially Weighted Aggregate (EWA) is an aggre-

gation method that was designed to reach optimal average risk,
in the context of non-parametric statistical regression, and has
been adapted to image denoising in [7]. The EWA aggregator
is defined as:

∀s ∈ Ω, x̂EWA(s) =
R∑
k=1

θk(s)x̂k(s)

with
θk(s) = exp(−|rk(s)|/β)πk(s)∑R

i=1 exp(−|ri(s)|/β)πi(s)

where β > 0, {πi(s)}i=1,.,R is drafted from a probability
distribution function π(s). In our work we defined π as a
uniform random distribution and β = 0.01. Note that rk(s) =
‖y(s) − x̂k(s)‖2

2 − σ2
n is the risk of the estimator x̂k at pixel

s, assuming a zero-mean additive white Gaussian noise with
standard deviation σn.

C. Fourier Burst Accumulation
In [8], the authors propose an image deblurring method based

on Fourier burst accumulation of multiple blurry acquisitions.
Adapting this method to our context leads to a final estimator
that has been optimized in the Fourier domain. Formally, the
FBA aggregator is defined as:

∀s ∈ Ω, x̂FBA(s) = F−1

(
R∑
k=1

wk(ζ) ◦ F(x̂k)(ζ)

)
(s), (3)

wk(ζ) = |F(x̂k)(ζ)|p∑R

l=1 |F(x̂l)(ζ)|p
(4)

where p is a non-negative integer, F represents the Fourier
transform operator and ζ the frequency index. The parameter p
emphasizes the predominance of the highest Fourier coefficient
value. In our work, we empirically identified p = 15 as the value
leading to optimal results.

III. Results
We display on Fig.1 the denoising performance of our three

methods, and compare the performance with the state-of-the-
art BM3D denoising method [9]. The first tested image is a
synthetic cell image [10], composed of a constant back-ground
and several cells (cytoplasm, nucleus and intra-cellular objects),
and the second one is a HeLa cell image obtained in fluorescence
microscopy. Both images are corrupted with a realistic mixed
Poisson-Gaussian noise with variance σn = 0.1.
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Fig. 1: Application of the FSR methods to the denoising of microscopic images. Results are compared with the state-of-
the-art method BM3D, and we display the PSNR measure of the reconstructions.
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Fig. 2: Zoom on the results displayed on Fig 1. On the Synth image, the LWC and EWA methods reconstruct well the flat
areas. The FBA method preserves the high contrast of the small objects. On the Hela image, the BM3D method gives a
smoother result.

The proposed techniques show similar performance with the
BM3D technique in terms of PSNR measure, while preventing
the artifacts due to the wavelet processing, visible mostly on
the synthetic image.
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