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ABSTRACT

Signal models are a cornerstone of contemporary signal
and image processing methodology. Two particular signal
modeling methods, called analysis and synthesis sparse repre-
sentation have been proven to be effective for many signals,
such as natural images, and successfully used in a wide range
of applications. Both models represent signals in terms of
linear combinations of an underlying set, called dictionary, of
elementary signals known as atoms. The driving force behind
both models is sparsity of the representation coefficients.
On the other hands, the dictionary choice determines the
success of the entire model. According to these two signal
models, there have been two main disciplines of dictionary
designing; harmonic analysis approach and machine learning
methodology. The former leads to designing the dictionaries
with easy and fast implementation, while the latter provides
a simple and expressive structure for designing adaptable and
efficient dictionaries [1]. The line of research followed in this
report is the synthesis-based sparse representation approach in
the sense that the dictionary is not fixed and predefined, but
learned from training data and adapted to data, yielding a more
compact representation [2], [3]. We report recent and novel
research results of two particular applications of this signal
modeling: image compression and image error concealment.

CONTRIBUTIONS

The first contribution of this report is addressing an adaptive
sparse representation over a trained dictionary in order to
efficiently compress the images [4]. Given a trained dictionary,
the sparse representation of the image patches can be achieved
by different ways such as the basis pursuit algorithms, match-
ing pursuit techniques and other schemes [6]. However, the
conventional sparse representation approaches consider a fixed
number of atoms, called sparsity level, for all the image
patches that can lead to a weak performance in the context of
image compression. We adopt an adaptive sparse representa-
tion approach. From the view of biological vision and scientific
analysis, the visual significance of each block (visual saliency)
varies with its spatial position [7]. Some regions can be more
sensitive to the Human Visual System (HVS) (salient regions),
while others have a lower level of visual interest. Therefore,
it is necessary to design an adaptive sparse representation
scheme by joining the sparse representation and the HVS
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characteristics in order to achieve an efficient compression
performance. Based on this representation, different sparsity
levels are assigned to the image patches belonging to the
salient regions of the image that are more conspicuous to
the human visual system. Experimental results show that
the proposed method outperforms the existing image coding
standards, such as JPEG and JPEG2000, which use an analytic
dictionary, as well as the state-of-the-art codecs based on the
trained dictionaries. Rate-distortion graphs for the test images
are presented in Fig. 1 for several baseline algorithms for
comparison, including JPEG, JPEG2000, and an K-SVD based
image compression algorithm, in which a fixed sparsity level
is considered for all patches [3].

The second contribution is application of the sparse signal
modeling for solving inverse problems, especially for image
error concealment (EC) techniques [5], whose purpose is to
reconstruct the original signal x from its degraded observed
version y. Without prior knowledge on X, recovering x from
y is an impossible task. Signal modeling is usually used as
a prior knowledge about the signal to solve this NP-hard
problem. Inspired by the synthesis-based sparse models as a
prior, the EC challenge is transferred into a distinct sparse
recovery frameworks. We use the learned dictionary in order
to adaptively select the most relevant basis for representing
each patch of the image, including the correctly received
surrounding areas of the lost region. Then, these basis and
corresponding coefficients are used to implicitly capture the
correlation among the lost region and the correctly received
pixels in its neighboring area and conceal the corrupted region.
In fact, this correlation is modeled by means of the sparse
representation of the correctly received neighboring area on a
learned dictionary. Our approach is motivated by the recent re-
sults in the compressive sensing theory [8], which suggest that,
under mild conditions, the sparse representation coefficients
of a given zone, including both known and unknown pixels,
can be correctly recovered from the sparse representation
coefficients of its neighboring area. Compared with the state-
of-the-art error concealment algorithms, experimental results
show that the proposed methods show better reconstruction
performance in terms of objective and subjective evaluations
over a range of packet loss rates. The PSNR and SSIM results
of concealed images obtained by different EC techniques are
given in Tables I for 30% random loss pattern.
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Fig. 1. Rate-distortion performance compared with JPEG, JPEG2000 and K-SVD based codec using fixed sparsity level in terms of PSNR for several test
images (size 512 x 512, gray-level).

TABLE I

AVERAGE PSNR AND SSIM USING SEVERAL EC TECHNIQUES FOR 30%

RANDOM LOSS (RAN.))

EC Technique

Loss [91 [10] [11] [12] [13] [14] [15] Proposed
Lena
Ron. PSNR 28.88 25.95 17.98 31.45 30.77 29.42 30.21 31.55
SSIM  0.926 0.913 0.652 0.955 0.940 0.838 0.943  0.956
Peppers
Ran. PSNR 29.04 26.94 17.80 31.23 30.91 30.00 30.01 31.68
SSIM  0.936 0.926 0.662 0.959 0.950 0.833 0.946 0.946
Goldhill
Ron. PSNR 29.90 28.16 18.97 30.38 29.22 28.54 28.87 30.97
SSIM 0913 0.906 0.684 0.921 0.908 0.825 0.908  0.925
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