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I. I NTRODUCTION

Principal Component Analysis (PCA) is a classical method for
estimating a subspace given noisy samples. It is useful in a variety of
applications [1], [2], [3] and problems ranging from dimensionality
reduction to anomaly detection and the visualization of high dimen-
sional data. Effective use of PCA requires a rigorous understanding
of its performance. This work analyzes PCA for samples with
heteroscedastic noise, that is, samples that have non-uniform noise
variances. In particular, we provide a simple asymptotic prediction
of the recovery of a low-dimensional subspace basis from noisy
heteroscedastic samples. The prediction enables: (a) easy and efficient
calculation of the asymptotic performance, (b) reasoning about the
asymptotic performance (with heteroscedasticity such as outliers),
and (c) a deeper understanding that PCA has best performance when
the noise is homoscedastic (all points share the same noise level).

II. M ODEL FORHETEROSCEDASTICDATA

We modeln heteroscedastic samplesy1, . . . , yn ∈ Rd as

Y = [y1 ∙ ∙ ∙ yn] = ŨΘ̃Z̃H + [η1ε1 ∙ ∙ ∙ ηnεn] (1)

where
• Ũ = [ũ1 ∙ ∙ ∙ ũk] ∈ Cd×k is the true subspace basis,
• Θ̃ = diag(θ̃1, . . . , θ̃k) ∈ Rk×k

+ are subspace amplitudes,
• Z̃ = [z̃(1) ∙ ∙ ∙ z̃(k)] ∈ Cn×k has IID random coefficient entries

with mean 0 and variance 1,
• εi ∈ Cd are IID noise vectors with IID entries with mean 0,

variance 1 and bounded fourth moment,
• n1 samples have noise std. dev.ηi = σ1, n2 haveηi = σ2, ...

III. M AIN RESULT

The following theorem (given for a single component model in [4])
provides part of our main result: a simple expression for the
asymptotic performance of thei-th principal component̂ui. The
paper [5] contains the remainder: simple expressions for asymptotic
performance of thei-th score vector̂z(i) andi-th PCA amplitudêθi.

Theorem 1:Suppose the sample-to-dimension ration/d → c > 0
and the noise variance proportionsn`/n → p` for ` = 1, . . . , L as
n, d → ∞. Then thei-th principal component̂ui is such that [5]
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We conjecture that whenA(βi) ≤ 0, the above limit (2) is zero.
Figure 1 shows simulations displaying these results forL = 2.

Figure 2 illustrates the behavior of the largest real root ofBi(x) in
relation to the noise variances.

IV. D EPENDENCE ONPARAMETERS

The main result (Theorem 1) enables us to reason about how PCA
depends on the various parameters.

Dependence on sample-to-dimension ratio and amplitudes.Fig-
ure 3 shows asymptotic recovery (2) as we sweep overc andθ̃i where
p1 = 80% of samples have noise varianceσ2

1 = 0.8 andp2 = 20%
of samples have noise varianceσ2

2 = 1.8. As expected, recovery
generally improves with increasingc (more samples per dimension)
and increasing̃θi (stronger signal). It also has a similar shape as the
homoscedastic case (analyzed in [6]) but with more samples generally
needed to achieve the same recovery.

Dependence on sample proportions.The green curves in Figure 1
show asymptotic recovery (2) asp2 ∈ (0, 1) varies withp1 = 1−p2,
c = 10, θ̃ = (1, 0.8), σ2

1 = 0.1, andσ2
2 = 3.25. Recovery generally

degrades with increasingp2; having more low noise samples is better.

Dependence on noise variances.Figure 4 shows asymptotic re-
covery (2) asσ2

1 and σ2
2 vary with c = 10, p = (0.7, 0.3) and

θ̃i = 1. Recovery generally improves with decreasing noise variances.
Interestingly, for a fixed average noise variance (i.e., along the dashed
line in the plot), the best recovery occurs whenσ2

1 = σ2
2 . It turns out

this is true in general, a fact which we next state.

V. A N UPPER BOUND ON PERFORMANCE

The following theorem provides an upper bound on the asymptotic
subspace recovery (2). The bound is a function of the average noise
variance and is attained when the noise is homoscedastic.

Theorem 2:The asymptotic subspace recovery (2) is bounded as:

A (βi)

βiB′
i (βi)

≤ max

(
0,

c − σ̄4/θ̃4
i

c + σ̄2/θ̃2
i

)
(4)

where σ̄2 :=
∑L

`=1
p`σ

2
` is the average noise variance. The bound

is attained whenσ2
1 = ∙ ∙ ∙ = σ2

L (i.e., the noise is homoscedastic).
Remark 1: It follows that the asymptotic recovery (2) for a fixed

average noise variance is maximized when the noise is homoscedas-
tic. Thus, using average noise variance to predict performance gives
an optimistic proxy; actual recovery will be worse than such predic-
tions for heteroscedastic data. Our expression (2) is more accurate.

VI. CONCLUSION

This work provides a simple expression for the asymptotic recovery
of a subspace basis from heteroscedastic samples by PCA. We use the
result to gain insights about the performance of PCA as a function of
the parameters and find an upper bound that shows the performance
for a fixed average noise variance is optimal when the noise is
homoscedastic. There are many avenues for future work, including
further study of the algebraic structure of the asymptotic recovery (2),
analyzing the non-asymptotic recovery, and considering a weighted
version of PCA. Preliminary work on weighted PCA suggests that
inverse variance weights (i.e., whitening) improve performance but
are not optimal; work on this analysis is ongoing.
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(a) Results ford = 102, n = 103 from 10000

trials.
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trials.

Fig. 1: Numerical simulation results forc = 10, θ̃ = (1, 0.8), σ2
1 = 0.1,

and σ2
2 = 3.25 where p2 is swept from0 to 1 with p1 = 1 − p2.

Simulation mean (blue curve) and interquartile interval (light blue ribbon)
shown with the asymptotic recovery (2) (green curve). The region where
A(βi) ≤ 0 is the red horizontal segment with value zero (as conjectured).
Going from Figure 1a to Figure 1b, we increase the problem size while
keeping the same model parameters. The simulation mean moves closer
to the asymptotic prediction and the interquartile range shrinks, indicating
concentration to the asymptotic prediction.
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Fig. 2: Location of the largest real rootβi of Bi(x) for two noise
variancesσ2

1 = 2 and σ2
2 = 0.75, occurring in proportionsp1 = 70%

and p2 = 30%, where the sample-to-dimension ratio isc = 1 and the
subspace amplitude is̃θi = 1.
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i,
ũ
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Fig. 3: Asymptotic subspace recovery (2) as a function of sample-to-
dimension ratioc and subspace amplitudẽθi with p1 = 80% of samples
having noise varianceσ2

1 = 0.8 andp2 = 20% of samples having noise
varianceσ2

2 = 1.8. Contours are overlaid in black and the region where
A(βi) ≤ 0 is shown as zero (as conjectured).
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Fig. 4: Asymptotic subspace recovery (2) as a function of noise vari-
ancesσ2

1 and σ2
2 occurring in proportionsp1 = 70% and p2 = 30%,

where the sample-to-dimension ratio isc = 10 and the subspace
amplitude isθ̃i = 1. Contours are overlaid in black and the region where
A(βi) ≤ 0 is shown as zero (as conjectured). Along the dashed cyan line,
the average noise variance isσ̄2 ≈ 1.74. As observed in Section IV, the
best performance occurs whenσ2

1 = σ2
2 = σ̄2, and this is true in general

as discussed in Section V.
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