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Abstract—We consider non-linear regression problems where we as-
sume that the response depends non-linearly on a linear projection of
the covariates. We propose score function extensions to sliced inverse
regression (SIR) problems, both for the first- order and second-order
score functions. We show that they provably improve estimation in the
population case over the non-sliced versions and we study finite sample
estimators and their consistency given the exact score functions. We also
propose to learn the score function as well, in two steps, i.e., first learning
the score function and then learning the effective dimension reduction
space, or directly, by solving a convex optimization problem regularized
by the nuclear norm. We illustrate our results on a series of experiments.

I. INTRODUCTION

In this work, we consider a random vector x ∈ Rd, a random
response y ∈ R, and a regression model of the form y = f(x) +
ε, which we want to estimate from n independent and identically
distributed (i.i.d.) observations (xi, yi), i = 1, . . . , n. Our goal is
to estimate the function f from these data. To avoid the curse of
dimensionality, we make the following assumption:

(A1) For all x ∈ Rd, we have f(x) = g(w>x) for a certain
w ∈ Rd×k and a function g : Rk → R. Moreover, y = f(x)+ε
with ε independent of x with zero mean and finite variance.

We consider a specific instantiation of the method of moments,
which partially circumvents the curse of dimensionality by estimating
w (which is called effective dimension reduction or e.d.r. space)
directly without the knowledge of g. The starting point for this
method is the work by Brillinger [1], which shows, as a simple
consequence of Steins lemma [2], that if the distribution of x is
Gaussian, and (A1) is satisfied with k = 1, then the expectation
E(yx) is proportional to w. The use of Stein’s lemma with a Gaussian
random variable can be directly extended using the score function
S1(x) defined as S1(x) = −∇ log p(x) = 1

p(x)
∇p(x), where p(x)

is the probability density of x. Known extensions: SIR [3] - works
only for Gaussian x, uses moment E(x|y)), PHD (Principal Hessian
Directions) [4] - works only for Gaussian, uses moment E(y · xxT )
and PHD+ [5] - works for any smooth distribution, doesn’t use slices
and uses 2-nd order score E(y·S2(x)) (where S2(x) = 1

p(x)
∇2p(x)),

which is hard to learn in real problems.

II. ESTIMATION WITH INFINITE SAMPLE SIZE

Here we focus on the population situation and propose two new
methods, SADE: Sliced average derivative estimation and SPHD:
Sliced principal Hessian directions. Under regularity assumptions:

Lemma 1 (SADE moment). Assume (A1). Then, E(S1(x)|y) is in
the e.d.r. space almost surely (in y).

The key difference is now that by conditioning on different values
of y, we have access to several vectors E(S1(x)|y). In the population
case, we will consider the matrix V1 = E

[
E(S1(x)|y)E(S1(x)|y)>

]
,

which will take eigenvectors of.
Similar results can be obtained for the second score function:
S2(x) = 1

p(x)
∇2p(x):

Lemma 2 (SPHD moment). Assume (A1). Then, E(S2(x)|y) has a
column space within the e.d.r. space almost surely.

III. ESTIMATION FROM FINITE SAMPLE AND ALGORITHM

The moments from Section II can be easily estimated from finite
date. Here we provide an estimator for V1 for SADE (the estimator
for SPHD is straightforward). This leads to the following algorithm:

– Divide range of y1, . . . , yn into H slices I1, . . . , IH . Let p̂h >
0 be the proportion of yi, i = 1, . . . , n, that fall in slice Ih.

– For each slice Ih, compute the sample mean (Ŝ1)h of S1(x):

(Ŝ1)h = 1
np̂h

n∑
i=1

1yi∈IhS1(xi).

– Compute the weighted covariance matrix V̂1=
H∑

h=1

p̂h(Ŝ1)h(Ŝ1)>h .

– Find the k largest eigenvalues and let ŵ1, . . . , ŵk be eigenvec-
tors in Rd corresponding to these eigenvalues.

With some extra regularity assumptions, V̂1 is a
√
n-consistent

estimator of V1, and this leads to a
√
n-consistent estimator of the

e.d.r. subspace when the score function is known.
IV. LEARNING SCORE FUNCTIONS

In practice we have to learn score functions from sample data.
Under the parametric assumption:

(A4) The score function `(x) is a linear combination of known basis
functions ψj(x), j = 1, . . . ,m, where ψj : Rd → Rd,

Using notation: Ψ is m× d matrix with rows equal to φj(x) and
θ is m-dimensional coefficient vector, the empirical score matching
cost function of [6] may be written as:

R̂score(θ) =
1

2
θ>
( 1

n

n∑
i=1

Ψ(xi)Ψ(xi)
>)θ−θ>( 1

n

n∑
i=1

(∇·Ψ)(xi)
)
.

This direct estimation of score function is more robust than estimation
of p(x) and then evaluating score function.

Introduce the notation

Ψ̂h =
1

|Ih|

n∑
i=1

1yi∈IhΨ(xi) ∈ Rm×d ; V̂1 =

H∑
h=1

p̂hΨ̂
>
h θθ

>Ψ̂h ∈ Rd×d.

• Two-step approach: solve the score matching optimization prob-
lem to obtain the optimal parameters of θ and then use them to
get the k largest eigenvectors of matrix V̂1.

• Direct approach: minimize
R̂(θ) = R̂score(θ) + λ · tr

[ H∑
h=1

p̂hΨ̂
>
h θθ

>Ψ̂h

]1/2
,

where tr[V̂1]1/2 is the nuclear norm of the matrix V̂1
By enforcing the low-rank constraint, the direct approach will

circumvent a potential poor estimation of the score function, which
could be enough for the task of estimating the e.d.r. space.

EXPERIMENTS
For experiments we consider a Gaussian mixture model with 2

components in Rd: The error ε has a standard normal distribution.
To estimate the effectiveness of an estimated e.d.r. subspace, we use
the square trace error R2(w, ŵ) [7]

R2(w, ŵ) = 1− 1

k
tr
[
(w>w)−1w>ŵ(ŵ>ŵ)−1ŵ>w

]
= 1− 1

k
tr
[
P ·P̂

]
.

On graphs 1 and 2 we compare methods with known scores, and on
graphs 3 and 4 we consider unknown score case, where we choose
basis functions as Gaussian kernels centered in the sample points,
matrix w = [I2, 0] ∈ Rd×2. We can see from graphs 1 and 2,
that direct approach works better and has wider range of applicable
bandwidths. Graph 3 shows, that usually first-orders method work
better, than second-order. Graph 4 shows failure mode of SADE,
where only one direction from e.d.r. can be recovered.
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Fig. 1. Rational function f(x) =
x1/(0.5 + (x2 + 2)2), d = 10, n =
1000; error dependence of bandwidth
of Gaussian kernels
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Fig. 2. Rational function f(x) =
x1/(0.5 + (x2 + 2)2), d = 20, n =
2000; error dependence of bandwidth
of Gaussian kernels
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Fig. 3. Mean and standard deviation
of R2(E, Ê) for the function f(x) =
x1/(0.5 + (x2 + 2)2)
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Fig. 4. Mean and standard deviation
of R2(E, Ê) for the function f(x) =
I(x2

1 + 2x2
2 > 4)
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