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I. CONTEXT AND CONTRIBUTIONS

In this work, we deal with the problem of estimating the directions
of arrival (DOA) of a set of incident plane waves. Most contributions
in this field assume that the received signal is only corrupted by
some additive noise, see e.g., conventional beamforming (CBF) [1] or
MUSIC [2] procedures. Unfortunately, when the waves travel through
highly fluctuating media, as in the case of e.g., atmospheric sound
propagation [3] or underwater acoustics [4], this model does no longer
describe accurately the physics underlying the propagation process. In
such cases, a multiplicative phase noise typically corrupts the col-
lected signal, making the corresponding DOA estimation problem
much more challenging. In this work, we propose a new methodology
to address this issue. Our procedure is grounded on a probabilistic
model combining a sparsity-enforcing Bernoulli-Gaussian prior on
the DOAs and a Markov-Gaussian model on the phase noise. The
estimation of the DOA is based on a mean-field approximation of
the Minimum Mean Square Error (MMSE) estimate associated to
this probabilistic model.

Our work also relates to the phase retrieval problem (e.g., [5])
where the phase information on the observations is completely
missing: only intensities or amplitudes are acquired. Formally, both
the phase retrieval problem and the problem considered here share
the same observation model but differ in the prior distribution they
enforce on the phase noise, the absence of phase information being
modeled by a non-informative prior, such as a uniform law (see [6],
[7]). We show in the present work how to nicely incorporate fine
noise-phase models in this framework, extending in this respect, the
approaches proposed in [6], [7].

II. MODEL

We consider the following observation model:

y = PDz + ω, (1)

where ω ∈ CN and P = diag({ejθn}Nn=1) ∈ CN×N play
respectively the role of an additive and a multiplicative phase noise.
Matrix D = [d1 . . .dM ] ∈ CN×M is made up of the steering
vectors di , [ej

2π
λ

∆ sin(φi) . . . ej
2π
λ

∆N sin(φi)]T , where φi’s are
some possible angles of arrival, ∆ is the distance between two
adjacent sensors, and λ is the wavelength of the propagation waves.

With this formulation, the DOA estimation problem is basically
equivalent to identifying the positions of the non-zero coefficients in
z. When P is equal to the identity matrix (corresponding to the stan-
dard DOA estimation problem), this can been carried out with stan-
dard sparse-representation algorithms, as considered in [8], [9]. Here,
we consider the more complex case where the phases θn’s are un-
known and obey the Markov model p(θ) =

∏N
n=2 p(θn|θn−1) p(θ1),

with p(θn|θn−1) = N (a θn−1, σ
2
θ), ∀n ∈ {2, . . . ,M}, a ∈ R+, and

p(θ1) = N (0, σ2
1). From a practical point of view, this model allows

us to describe spatial fluctuations of the propagation medium all along
the antenna.

To account for the sparsity of z, we consider a Bernoulli-
Gaussian (BG) model, which has been now largely used in the
sparsity literature (see e.g., [10], [11]). Finally, we classically assume
p(ω) = CN (0, σ2IM ).

III. PHASE-AWARE SOBAP

Based on this probabilistic model, we propose to look for the
solution of the following MMSE problem

ẑ = arg min
z̃

Ez|y
[
‖z− z̃‖22

]
,

relying on the marginal posterior distribution p(z|y) =∫
θ
p(z,θ|y) dθ. The computation of this marginalization being an

intractable problem, we propose to resort to a particularization of
the “variational Bayes EM algorithm” [12] based on the mean-field
approximation q(z,θ) = q(θ)

∏
i q(zi) of the joint distribution.

Due to space limitation, we omit here the mathematical derivations
of this iterative approach, but we refer the reader to our technical
report [13]. In the sequel, the proposed algorithm will be dubbed
“paVBEM” for “phase-aware VBEM algorithm”.

IV. PROOF OF CONCEPT

We consider the problem of identifying the directions of arrival of 2
plane waves from N = 256 observations. We assume that the angles
of the 2 incident waves can be written as φk = −π

2
+ik

π
50

with ik ∈
[1, 50], ∀k ∈ {1, 2}. The set of angles {φi = −π + i π

50
}i∈{1,...,50}

together with the choice of the parameter ∆/λ = 4 define the
columns of the dictionary D. We set the following parameters for
the phase Markov model: σ2

1 = 106, σ2
θ = 1 and a = 0.8. This

corresponds to the situation where one has a large uncertainty on
the initial value of the phase noise but connections exist between the
phase noise on adjacent sensors.

As a figure of merit, we consider the normalized correlation be-
tween the ground truth z and its reconstruction ẑ, i.e., |zH ẑ|

‖z‖2‖ẑ‖2
. This

quantity is averaged over 50 realizations for each point of simulation.
Figure 1 presents the performance of the following algorithms: i) the
standard CBF [1]; ii) the prVBEM algorithm introduced in [7] as a
solution to the phase retrieval problem; iii) the paVBEM procedure
proposed in this paper (BG paVBEM); iv) a relaxed version of
paVBEM in which the BG prior on z is replaced by a Gaussian one
(Gaussian paVBEM). We see that CBF fails to cope with the presence
of fluctuations in the phase θ. The performance of the three other
algorithms directly relates to the level of information they exploit: the
proposed methodology outperforms its relaxed counterpart which, in
turn, leads to better performance than the procedure proposed in [7].
This good behavior tends to prove a successful inclusion of the priors.
Future work will include further assessment in underwater acoustics.
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|ẑ
H
z
|

‖z
‖ 2
‖z
‖ 2 CBF

prVBEM

Gaussian paVBEM

BG paVBEM

Fig. 1. Evolution of the (averaged) normalized correlation as a function of
the variance σ2.
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