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Low complexity models of high-dimensional data lie at the heart of
many efficient solutions in modern signal processing. One such model
is that of sparsity in a dictionary, where every signal in the data class
at hand has a sparse expansion in a predefined basis or frame. In
mathematical terms we say that there is a set of K unit-norm vectors
φk ∈ Rd, also referred to as atoms, collected as columns in the
dictionary matrix Φ = (φ1, . . . ,φK), and that every data point y ∈
Rd can be approximately represented as y ≈ ΦIxI =

∑
i∈I

x(i)φi,

for an index set I of cardinality S with S � d.
A fundamental question associated with the sparse model is how

to find a suitable dictionary providing sparse representations. When
taking a learning rather than a design approach this problem is known
as dictionary learning or sparse component analysis. In its most
general form dictionary learning can be seen as a matrix factorization
problem. Given a set of N data points in Rd, represented by the d×N
matrix Y = (y1, . . . ,yN ), decompose it into a d×K dictionary Φ
and a set of sparse coefficients, Y = ΦX , where X is sparse.

Since the seminal paper by Olshausen and Field, [1], a myriad
of dictionary learning algorithms have been developed and recently
also theory on the problem has started to emerge. For an overview
of dictionary learning algorithms see [2], while pointers to the
main theoretical results can be found in [3]. Despite the recent
developments, so far there exist no efficient algorithms with global
recovery guarantees, and even the algorithms that are not supported
by theoretical results become computationally intractable as the signal
dimension increases.

In this paper we take a step towards increasing computational
efficiency of dictionary learning, thus making it applicable to high-
dimensional data. As a starting point for our development we use
the residual version of the Iterative Thresholding and K-Means
(ITKM) algorithm presented in [4], which is supported not only by
experimental validation but also by local convergence results. Given
an initialization dictionary Ψ, dictionary learning is carried out by
iteratively performing two operations: (1) finding the sparse support
Itn of each point in the data set Y by using thresholding as

Itn = arg max
|I|=S

‖Ψ∗Iyn‖1, (1)

and (2) updating the dictionary via K-residual means. For most
admissible sparsity levels which still allow for stable dictionary
recovery, the computationally most expensive operation of ITKM is
finding the sparse support. This entails the calculation of the matrix
product Ψ∗Y of cost O(dKN) at each iteration. Although this is
a quite low cost compared to popular dictionary learning algorithms
such as the K-SVD algorithm, [5], which additionally requires the
calculation of K leading singular vectors in each iteration, learning
dictionaries for high-dimensional data can still be prohibitively
expensive.

We therefore introduce the Iterative Compressed-Thresholding and
K-Means (IcTKM) algorithm for fast dictionary learning, which has
significantly reduced computational cost and can efficiently process
large data sets. The key modification of the ITKM algorithm is based
on a fundamental dimensionality-reduction result due to Johnson and
Lindenstrauss (JL) [6]. It states that for any set X in Rd with |X | =
N , there exists a map f : Rd → Rm with m = O

(
δ−2 logN

)
and

δ ∈ (0, 1
2
), such that for all u,v ∈ X

(1− δ) ‖u− v‖22 ≤ ‖f(u)− f(v)‖
2
2 ≤ (1 + δ) ‖u− v‖22 . (2)

Moreover probabilistic matrix constructions can efficiently realize
the low-distortion embedding f : Rd → Rm in (2). Recent
developments have focused on improving the computational costs
associated with the embedding and providing tighter bounds on the
required embedding dimension, [7], [8], [9]. In particular, matrices
with the Restricted Isometry Property (RIP), as introduced by Candès
and Tao in [10], can realize the embedding f : Rd → Rm in
(2) with high probability when their column signs are randomized
[9]. In the specific case where these RIP matrices are formed
by choosing at random a subset of m rows from an orthogonal
(discrete Fourier [11] and Cosine [12]) or circulant [13] matrix, the
computational cost associated with embedding the data is O(d log d),
and the required embedding dimension assumes the near-optimal
bound m = O(max{δ−1 log

3
2 N log

3
2 d, δ−2 logN log4 d}).

In the proposed IcTKM algorithm, we can reduce the computa-
tional cost associated with finding the sparse support Itn in (1) by
embedding the entire data set Y and the initialization dictionary Ψ
with a fast JL transformation. Let m × d denote the JL transform
matrix, e.g, a partial orthogonal or circulant matrix with randomized
column signs; we replace the thresholding operation in (1) with the
compressed-thresholding operation, which we define as

Ictn := arg max
|I|=S

‖Ψ∗IΓ∗Γyn‖1. (3)

The computational cost associated with compressed-thresholding
reduces to O(max{δ−1 log

3
2 N log

3
2 d, δ−2 logN log4 d}KN) as

opposed to O(dKN) of regular thresholding. Thus the embedding
distortion δ controls the performance improvement of IcTKM over
ITKM. We also have the following convergence results, see [14] for
details: the number of data points N (sample complexity) required
for IcTKM to locally identify a dictionary with high probability is
essentially the same as that of ITKM, while the embedding distortion
δ increases the best achievable error ε̃ and reduces the convergence
radius of IcTKM; However increasing the minimally achievable error
is largely negligible for high-dimensional data, since the realistically
achievable error is determined by the sample size. The reduction of
convergence radius is somewhat more disappointing, but as we show
in our numerical experiments in Figures 1 and 2 and in Table I, in
practice this does not affect the good global convergence behavior
and reduced computational cost of IcTKM.
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Fig. 1: Lowest achievable embedding dimension to recover 95% of
the atoms of the Dirac-DCT dictionary with IcTKM when using
random dictionary initialization and the following JL transformations:
partial Fast Fourier Transform (FFT), Discrete Cosine Transform
(DCT), Circulant Rademacher Transform (CRT), and Circulant Gaus-
sian Transform (CRT). Training data with d ∈

{
27, 28, 29, 210

}
and

K = 3
2
d were generated following the signal model in [4] with

the parameters: sparsity level S =
√
d
2

, noise level ρ = 1

2
√
d

, and
dynamic range varying from 1 to 4.

JL Transform m (% of d) No. of Iterations

FFT

15% 65
20% 58
30% 45
40% 39
65% 33

DCT

20% 126
30% 52
40% 46
65% 35

CRT/CRT

30% 68
40% 55
65% 47

No transf. (ITKM) 100% 33

TABLE I: Number of iterations required to recover 95% of the
atoms from the Dirac-DCT dictionary when using a random dic-
tionary initialization with ITKM, and with IcTKM using different JL
transformations. Training data generated with the same parameters as
those used in Figure 1 and with d = 210 and K = 3

2
d.
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Fig. 2: Relative performance of IcTKM compared to ITKM to process
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