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Abstract—Blind Source Separation (BSS) is a powerful method to
analyze multichannel data in fields that involve processing large-scale
data (e.g. astrophysical data, spectroscopic data in medicine and nuclear
physics, etc.). However, standard methods fail at correctly tackling BSS
problems when the number of sources becomes large, especially when
the number of available samples is low. Building upon a standard
BSS algorithm, namely GMCA (Generalized Morphological Component
Analysis - [1] [2]), we propose investigating the performances of block-
coordinate optimization strategies to tackle sparse BSS problems in the
large-scale regime. Preliminary results reveal that the proposed approach,
the block-GMCA algorithm, significantly improves the performances of
the standard GMCA algorithm.

I. THE PROPOSED ALGORITHM

In the framework of BSS, the multichannel data Y are composed
of m row observations and are assumed to be the linear combination
of n unknown elementary sources S of t samples such that Y =
AS+N. The matrix N represents the noise and model imperfections.
Neither the mixing matrix A nor the sources S are known, which
makes this problem an ill-posed unsupervised matrix factorization
problem [3]. So far, several approaches have been introduced to make
BSS a better-posed problem. In this study, we will focus on the case
of sparse BSS problems [4]. The proposed approach builds upon the
GMCA algorithm [1], which seeks a critical point of :

minimize
A,S

1

2
‖(Y −AS)‖22 + ‖Λ� S‖1 (1)

where Λ includes regularization terms. The first term of (1) enforces
the proximity between observations and factorization, while the `1
norm enforces the sparsity of the estimated sources. Problem (1)
is non-convex, which entails that the minimization strategy plays a
key role to provide robustness with respect to spurious local critical
points. The GMCA algorithm is built upon an iterative procedure
alternately minimizing the problem (1) with respect to the sources
S and the mixing matrix A. This procedure is reminiscent of the
popular algorithm ALS (Alternate Least-Square [5]) in NMF (Non-
negative Matrix Factorization) and dictionary learning methods [6].
For a large number of sources n, numerical experiments show
that this approach fails (Figure 1) because the GMCA algorithm
is very likely prone to be trapped in local critical points. To
alleviate this problem, we propose investigating the use of block-
coordinate minimization schemes [7], [8]. Unlike GMCA, the pro-
posed block-GMCA algorithm performs by minimizing (1) using
blocks I of A and S of size r (the whole Y being used):
minimizeAI ,SI

1
2
‖(Y −AISI −AIcSIc)‖22 + ‖Λ� SI‖1. Each

iteration (k) can then be described as follows:
1 - Randomly select a subset I of size r and update the submatrix

SI assuming A is fixed. This is performed by computing a
projected least-square solution: ŜI = SΛ(k)(A

(k)
I

†
RI), where

the residual term is defined by RI = Y−A
(k)
Ic S

(k)
Ic , the set Ic

is the complement of I in [1, n] and A
(k)
I

†
is the pseudo-inverse

of A(k)
I . The operator SΛ(k)( . ) is the standard soft-thresholding

operator with thresholds Λ(k).

2 - Update the submatrix AI : ÂI = RIS
(k)
I

†
.

3 - Update the threshold matrix Λ(k). Following [1], the use of
a decreasing thresholding strategy significantly improves the
robustness of the GMCA algorithm with respect to spurious
critical points and noise. This is carried out by retaining at each
iteration an increasing number of samples with amplitudes larger
than 3σ, σ being the noise standard deviation.

Note that a new subset I is randomly chosen at each iteration,
ensuring some robustness due to several sources combinations tests.

II. NUMERICAL RESULTS

For the sake of simplicity, the sources are assumed to be sparse in
the sample domain. These results would be identical for any sources
that are sparse in an orthogonal representation. For that purpose, the
entries of the sources are drawn randomly according to a Generalized
Gaussian distribution with a profile parameter α = 0.3, which is a
reasonable proxy for approximately sparse sources. The number of
samples t is 1000. The mixing matrix A is drawn randomly (with
m = n), such that its condition number is 1. The initialization
consists in a random A and a zero matrix for S. 2000 iterations are
performed so that all sources are updated a sufficient amount of times.
Figure 2 displays the performances of the block-GMCA algorithm
for different number of sources when the block size r evolves from
1 (the sources are updated individually) to n (the standard GMCA
algorithm). These performances are evaluated using a mixing matrix
criterion CA defined in a similar way as in [2]. CA is the median of
the matrix PA†A∗ − I, with A∗ the true mixing matrix and PA† the
pseudo-inverse of the solution estimated by the algorithm, corrected
through P for the scale/permutation indeterminacies.
For low block sizes (i.e. typically r < 5), the loss of separation
quality is likely explained by increased error propagations. Indeed,
in block-GMCA, the submatrices AI and SI are updated from a
residual, which might be prone to error propagations. For large batch
sizes (r > 40 for n = 50 and r > 70 for n = 100), the loss is more
likely the consequence of a lack of robustness to local critical points.
It is very interesting to see that there is a regime, with potentially
small block sizes (e.g. 5 < r < 70), where the separation is of
improved quality. While the convergence of the block-coordinate
minimization scheme is guaranteed [7], updating random subsets of
the sources yields randomness that likely improves the robustness of
the minimization procedure with respect to local critical points.

CONCLUSION

We introduce the block-GMCA algorithm to improve the per-
formances of sparse BSS in the large-scale regime. Preliminary
experiments show that the proposed block-coordinate minimization
approach significantly improves the performances when the number
of sources to be estimated is large. Moreover, the block-GMCA paves
the way for computationally effective implementations of sparse BSS
methods due to potential parallel implementations. More details about
the algorithm and the results will be presented at the conference.



Fig. 1. Results of two BSS algorithms as a function of the number of
sources. The values are computed as −10 logCA, with CA the mixing matrix
criterion, and are high for high quality separation. Thick line: GMCA, thin
line: fast ICA, showing that the deterioration of the separation quality for
larger n is not limited to GMCA and thus the interest of developping efficient
large-scale methods.

Fig. 2. −10 logCA as a function of r and for several numbers of sources.
Thick line: block GMCA, thin line: GMCA.
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