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I. INTRODUCTION

In this work we consider the problem of recovering an unknown
signal x ∈ Rn from m linear noisy measurements of the form

y = Ax+ e, (1)

where A is an m×n matrix with entries independently drawn from
the standard normal distribution and e ∈ Rm represents the noise.
We assume that the noise does not depend on A, and that its energy is
bounded. Further, we assume that m < n. As in this case recovering
x from y becomes an ill-posed problem, an additional prior on x
is required. We rely on a general signal model - a union of low
dimensional linear subspaces [1]–[3]. More specifically, we assume
that a possibly infinite set of finite-dimensional subspaces S = {Vi}
is given, and that the signal belongs to one of the subspaces in S,
i.e., x ∈ V0, and V0 ∈ S. However, this subspace is unknown. We
define the B-order sum for the set S, with an integer B ≥ 1, as

SB ,

{
B∑

i=1

Vi : Vi ∈ S

}
. (2)

We also define the union of all subspaces in the set SB as

UB ,

{⋃
i

VB
i : VB

i ∈ SB

}
. (3)

Notice that our signal model is x ∈ U , where U ≡ U1. This general
union of subspaces framework subsumes many popular models, such
as sparse representation and structured sparsity [4], [5], the low-
rank structure [6], the signal space setup [7], the cosparse analysis
framework [8], and also combinations of these models.

II. MAIN RESULTS

We study a generalized version of the popular compressive sam-
pling matching pursuit (CoSaMP) [9]. The generalized CoSaMP
(GCoSaMP) algorithm is presented in Table I. The main difference
compared to CoSaMP is that support selections are replaced by
subspace selections. The notation PV in GCoSaMP stands for the
orthogonal projection onto the subspace V .

Denoting the unit Euclidean sphere in Rn by Sn−1, we provide
recovery guarantees that depend on the Gaussian mean width of the
set K , U4 ∩ Sn−1, defined as

w(K) , Eg

{
sup
z∈K
〈g,z〉

}
, (4)

where the expectation is taken over g ∼ N (0, In) [10], [11]. We
show that when the number of measurements m is large enough

with respect to some constant m0 = O(w2(K)), we have that the
reconstruction result x̂ satisfies

‖x̂− x‖2 ≤ c0 + c1‖e‖2 (5)

with high probability, where c0 = O(m−t/2) tends to zero as the
number of iterations t grows, and c1 = O(m−1). The significance
of this result, except for its generality, is in showing that the effect
of any stationary noise, that does not depend on A, tends to zero as
the number of measurements grows. The recovery guarantees hold
for any algorithm that is an exact instance of GCoSaMP. This is the
case in CoSaMP [9] and ADMiRA [12], though the proof techniques
previously used for them did not lead to this general conclusion on
the noise reduction except for the special case of Gaussian noise [13].

The computational complexity of GCoSaMP is dominated by the
complexity of the subspace selections problem. For certain choices of
S, optimal subspace selection methods exist and can be implemented
efficiently, while for other choices of S, relaxations of GCoSaMP
that rely on approximate subspace selection strategies are required
in order to obtain practical algorithms. These relaxed versions may
not possess the aforementioned recovery guarantees, but they are still
closely related to GCoSaMP. Examples of relaxed algorithms include
SSCoSaMP [7] and ACoSaMP [14]. Following this route, we apply
GCoSaMP for signal reconstruction in a combined model, x = x1+
x2, where x1 is a sparse-synthesis signal (in a given dictionary) and
x2 is a cosparse-analysis signal (in a given analysis operator). We use
an approximate subspace selection strategy that finds the support and
cosupport separately using a simple thresholding for each of them. We
name the resulted method synthesis-analysis CoSaMP (SACoSaMP).
Though it does not formally possess the theoretical guarantees we
derived for GCoSaMP, it is shown to be useful in several scenarios.

III. EXPERIMENTS

We focus on the application of SACoSaMP to simultaneous image
reconstruction and structured noise removal. The noise is assumed
to be a random combination with random Gaussian weights of a
small number (500) of atoms from the local discrete cosine transform
(DCT) with window size of 64× 64 pixels and overlap of 32 pixels
(the 16 × 16 lowest frequencies in each window are excluded from
the dictionary). The noise is added to an original clean image, and
the resulted noisy image is quantized to 8 bits per pixel (bpp). The
sampling operator A is a 2D Fourier transform that measures only
part of the points in the Fourier domain according to a given binary
mask. The cosparse analysis operator is the finite difference analysis
operator that computes horizontal and vertical discrete derivatives of
an image. We examined the performance of several reconstruction
methods for two different test images. The inputs and the results are
given in Fig. 1. More details on this work appear in [15].
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Fig. 1: Recovery results for the modified Shepp-Logan phantom (top) and house (bottom) images with SNR of 7dB and 10dB respectively. From
left to right: Original image, noisy image (with textured noise), binary mask for Fourier domain sampling, naïve recovery using zero padding and
inverse Fourier transform, SACoSaMP recovery of the analysis part (original image), SACoSaMP recovery of the analysis + synthesis parts (noisy
image), modified-SACoSaMP (with split least squares step) recovery of the analysis part (original image), and ACoSaMP recovery (analysis part).
The algorithms’ parameters are tuned manually.

Input: A,y, stopping criterion, set of subspaces S, where
y = Ax+ e, such that e is an additive noise and x is
an unknown signal satisfying x ∈ U .

Output: x̂ ∈ U an estimate for x.
Initialize: r = y,x0 = 0, t = 0,V0 = ∅
while stopping criterion not met do

t = t+ 1;
ṽ = A∗r;
Vt

∆ = argmin
V∈S2

‖ṽ −PV ṽ‖2;

Ṽt = Vt−1 + Vt
∆;

x̃t = argmin
z
‖y −Az‖2 s. t. z ∈ Ṽt;

Vt = argmin
V∈S

‖x̃t −PV x̃
t‖2;

xt = PVt x̃t;
r = y −Axt;

end
x̂ = xt;

TABLE I: Generalized CoSaMP (GCoSaMP)
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