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I. INTRODUCTION

The spectral compressed sensing (CS) or compressed sensing off-
the-grid deals with robust reconstruction of the underlying signal
composed of Diracs from sparse Fourier domain measurements [1]–
[4]. The stream of Diracs is a special instance of signals with
a finite rate of innovation (FRI) [5]–[7]. The class of FRI signals
includes a stream of Diracs, a stream of differentiated Diracs,
non-uniform splines, and piecewise smooth polynomials. Although
Vetterli et al. [5]–[7] proposed time-domain sparse sampling schemes,
the extension of the spectral compressed sensing for general class of
FRI signals is not available. Therefore, one of the main aims of this
paper is to generalize the scheme by Vetterli et al. [5]–[7] to address
Fourier CS problems that recover a general class of FRI signals from
irregularly subsampled Fourier measurements.

II. MAIN RESULTS

The Fourier CS problem of our interest is to recover the unknown
signal x(t) from the Fourier measurement:

x̂(f) = F{x(t)} = ∫ x(t)e−i2πftdt .

Without loss of generality, we assume that the support of x(t) is
[0,1]. Then, the sampled Fourier data at the Nyquist rate is defined
by x̂[k] = x̂(f)∣f=k . We also define a length (r + 1)-annihilating
filter ĥ[k] for x̂[k] that satisfies

(ĥ ∗ x̂)[k] =
r

∑

l=0

ĥ[l]x̂[k − l] = 0, ∀k. (1)

The explicit form of the minimum length annihilating filter has been
extensively studied for various FRI signals [5]–[7].

Suppose that the filter ĥ[k] is the minimum length annihilating
filter. Then, for any k1 ≥ 1 tap filter â[k], it is easy to see the filter
ĥa = â∗ĥ with d = r+k1−1 taps is also an annihilating filter for x̂[k],
because ĥa∗x̂ = â∗ĥ∗x̂ = 0. The corresponding matrix representation
provides us H (x̂)

¯̂
ha = 0, where ĥa = [ĥa[0],⋯, ĥa[d − 1]]

T
and

the Hankel structure matrix H (x̂) is constructed as

H (x̂) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂[0] x̂[1] ⋯ x̂[d − 1]
x̂[1] x̂[2] ⋯ x̂[d]
⋮ ⋮ ⋱ ⋮

x̂[n − d] x̂[n − d + 1] ⋯ x̂[n − 1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

In [8], we then show the following key result :

Theorem 1. Let r + 1 denote the minimum size of annihilating filter
that annihilates sampled Fourier data x̂[k]. Assume that min{n −
d + 1, d} > r. Then, for a given Hankel structured matrix H (x̂)

constructed in (2), we have

RANKH (x̂) = r. (3)

When the underlying FRI signals has cardinal representations (i.e.
singularities are located only on uniform grid), Theorem 1 holds
using a wrap-around Hankel matrix. For general class FRI signals,
there exist whitening operators that convert the FRI signals to sparse
innovations such as Diracs or differentiated Diracs [5], [9]. Then, the
associated annihilating filters exist in the weighted Fourier domain,
where the weighting is determined by spectrum of the associated
whitening operator [5], [9]. Therefore, Theorem 1 informs that there
always exists a low-rank Hankel structured matrix in weighted Fourier
domain, and the associated rank is determined by the minimum length
annihilating filter in the weighted Fourier domain.

Accordingly, the only required change for CS recovery of FRI sig-
nals is an additional Fourier domain interpolation step that estimates
missing Fourier measurements. This can be done using the following
low-rank Hankel matrix completion algorithm.

minimize
ĝ∈Cn

∥H (ĝ)∥
∗

subject to PΩ(ĝ) = PΩ(̂l⊙ x̂).
(4)

where ∥ ⋅ ∥∗ denotes the matrix nuclear norm, l̂ is the spectrum
of the whitening operator, and ⊙ is element-wise product. Once a
set of weighted Fourier measurements at consecutive frequencies
is interpolated, the element-wise weights are removed and a FRI
signal can be reconstructed using Prony’s method and matrix pencil
algorithms, as in earlier studies [5]–[7].

In [8], we further show that the proposed Fourier CS of FRI signals
operates at a near-optimal rate with provable performance guarantees.

Theorem 2. Let Fourier domain sampling index Ω be a multi-set
consisting of random indices following the uniform distribution on
{0, . . . , n − 1}. Suppose, furthermore, that H (̂l ⊙ x̂) is of rank-r
and satisfies the standard incoherence condition [10] with parameter
µ. Then there exists an absolute constant c1 such that l̂ ⊙ x̂ is the
unique minimizer to (4) with probability 1 − 1/n2, provided

m ≥ c1µcsr logα n, (5)

where α = 2 if Hankel matrix has the wrap-around property; α = 4,
otherwise, and cs ∶= max{n/n1, n/n2}.

III. CONCLUSION

This paper developed a near-optimal Fourier CS framework using
a structured low-rank interpolator in the measurement domain to use
before an analytic reconstruction procedure is applied. Numerical
results in Appendix confirmed that the proposed method outperforms
the existing CS approaches.



APPENDIX

Fig. 1. Proposed sampling scheme: here, the CS step is replaced by a
discrete low-rank interpolator, and the final reconstruction is done using the
reconstruction filter from fully sampled data.

Fig. 2. Phase-transition diagrams for recovering the super-position of the
piecewise constant signal and Diracs from m randomly sampled Fourier
samples. The size of the target signal (n) is 100 and the annihilating
filter size d was set to 51. The left and right graphs correspond to the
phase-transition diagram of the l1-TV compressed-sensing approach and the
proposed low-rank interpolation approach, respectively. The success ratio is
obtained from the success ratio of 300 Monte Carlo runs. Two transition
lines from compressed sensing (blue) and the low-rank interpolator (red) are
overlaid.

Fig. 3. Fully sampled Fourier measurement and the interpolated data from
m = 36 irregularly sampled data. (a) Low-rank interpolation results without
spectrum weighting. (b) The proposed low-rank interpolation using optimal
weighting l̂(ω) = iω. For this simulation, the following parameters were used:
d = 51, n = 100 and m = 36.
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