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Sparse signal recovery aims to recover an unknown signal x ∈ Rn
from few non-adaptive, possibly noisy, linear measurements y∈Rm
using a nonlinear sparsity-promoting algorithm, under the assumption
that x is sparse or compressible with respect to a known basis
or frame [1]. Specifically, y = Ax+ e, where A ∈ Rm×n is
the measurement matrix, e ∈ Rm is the measurement error, and
m� n. Many of the sparse recovery approaches proposed during
the past decade can be regarded as iterative estimation of a signal
from a degraded observation [2]–[6]. A common feature of these
approaches is that the degradation is modeled as independent and
identically distributed (i.i.d.) additive noise that has to be alleviated
by a denoising filter at each iteration. For instance, Approximate
Message Passing (AMP) [2] enforces an i.i.d.additive Gaussian noise
denoising problem at each iteration through the Onsager correction
term [2]–[4]. Plug&Play-Prior (P3) frameworks [5], [6] use denoising
algorithms as regularizers (priors) for model-based inversion via the
alternating direction method of multipliers (ADMM) [7]. The idea
of ADMM is to convert an unconstrained optimization problem
x̂ = argminx f(x) + λg(x) into its equivalent constrained form
which is then decoupled into two separate optimizations:

(xk+1,vk+1) = argmin
x,v∈Rn

{
f(x) + λg(v) +

µ

2
‖x− v − b‖22

}
, (1)

bk+1 = bk − (xk+1 − vk+1),

where v is the auxiliary variable, b is the scaled Lagrange multiplier,
and µ is a fixed parameter for improving the numerical stability of
the algorithm. Note that the x-subproblem and v-subproblem of (1)
are the Moreau proximity operators of f and g computed at vk+bk

and xk+1−bk, respectively. P3 suggests that the x-subproblem can be
interpreted as an inversion step since it only depends on the choice
of forward model f(x), while the v-subproblem can be regarded
as a denoising step since it only depends on the choice of prior
g(v). Thus, one can reformulate the v-subproblem of (1) as vk+1=

D(ṽk) def
= argminv g(v)+

1
2σ2 ‖v− ṽk‖22, where ṽk = xk+1−bk is

treated as some noisy (degraded) realization of an unknown signal
v, and D :Rn→Rn is a generic denoiser. Various denoisers can be
applied as priors in P3, yet, to the best of our knowledge, all works
have so far adopted filters modeling the degradation as i.i.d. noise.

In this work, we focus on the modeling of such degradations as
spatially (or spatiotemporally) correlated noise. Our motivation is
that the common assumption of i.i.d. Gaussian noise is valid only
under special conditions that are hardly met in practice, e.g., like
the measurement matrix A being itself random i.i.d. Gaussian (as
required by AMP). In fact, in many practical sparse signal recovery
applications, there can be a significant spatial (and temporal) correla-
tion in the noise bk at each iteration (see Figures 1 and 2). In contrast
to i.i.d. white noise, correlated noise can lead to disproportions in
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the magnitude of errors across the data spectrum, to an extent that
i.i.d. denoisers may not effectively discern between the true signal
and noise in regularization via shrinkage. Hence, ignoring such
correlation in the denoising step can lead to ineffective filtering and
also distortion to the underlying signal.

Our contribution is to model the noise bk at each iteration as
spatially (or spatiotemporally) correlated noise, and adopt such model
within the denoising. Specifically, we consider the noise power
spectral densities (PSD) with respect to the sparsifying transforms
used internally by the filters: these PSDs modulate the shrinkage
thresholds, i.e. allow to compare the magnitude of each transform
coefficient against that of the corrupting noise. While more sophis-
ticated than an i.i.d. model, our correlated noise modeling remains
in general only an approximation of the true degradation statistics
at each iteration, which can be intricate and are result of multiple
contributors: the structure of A, the statistics of e, as well as their
interaction with the structure of x and the effect of D during the
previous iterations. Therefore, we pragmatically resort to fitting a
PSD description to the residuals bk via the median absolute deviation
(MAD) of the transform spectra of all patches. This is performed
at every iteration and constitutes an adaptive estimate of the noise
correlation which can be utilized by the filter D in the denoising step.

Experiments were performed on three different applications of
sparse recovery: volumetric magnetic resonance imaging (MRI),
multi-epoch radio-interferometry (RI), and video recovery from tem-
porally compressed measurements. The 64×64×64-voxel volumetric
MRI reconstruction of the BrainWeb phantom [8] with nonzero phase,
subsampling ratio of 30% with spherical sampling trajectory and
initial noise σe=5%, is shown in Figure 3. We use the BM4D filter
[9] as denoiser for volumetric data, under the modeling assumption
of either i.i.d. (as in [9]) or spatially correlated noise (this work).
BM4D operates by grouping mutually similar 3-D cubes of voxels
into 4-D arrays; the 4-D PSD of each group is obtained by replicating
the input 3-D PSD of the cubes (see Fig. 1) under the simplifying
assumption that grouped cubes do not overlap. Multi-epoch RI images
and spatiotemporally encoded video are recovered via P3 using the
RF3D denoiser [10] for regularization (Figures 4 and 5). RF3D
operates on spatiotemporal volumes formed by concatenating blocks
along motion trajectories. The PSD of each spatiotemporal volume
is computed internally by the filter, based on the volume trajectory,
from a pair of 2D PSDs, one of the temporally uncorrelated noise
and another of the fixed-pattern noise component.

The results demonstrate that modeling the degradation as correlated
noise yields a better detection and sharper recovery of fine structures,
attesting its practical advantage over the common i.i.d. modeling in
iterative sparse signal recovery. The PSDs shown in Figures 1 and 2
give evidence of order-of-magnitude differences across the spectrum,
with noticeable anisotropy. While here we report experiments with
noisy measurements, we note that similar forms of correlation take
place also in the sparse recovery from noise-free (i.e. e = 0)
measurements.



Figure 1. Spatial correlation in the volumetric residual of MRI reconstruction
(see Fig. 3) at iteration 100 (left) and 2000 (right) of 2000, visualized as noise
power spectrum (PSD) with respect to the 4×4×4 3D DCT. Only the lowest-
frequency and highest-frequency faces of each 3D PSD cube are shown.

Figure 2. Spatiotemporal correlation in the residual in multi-epoch RI imaging
(left, iter. 30/70, see Fig. 4) and video recovery (right, iter. 6/18, see Fig. 5),
visualized as PSD with respect to the 8×8×8 3D DCT. Only the lowest-
frequency and highest-frequency faces of each 3D PSD cube are shown.

Figure 3. 1st (resp. 2nd and 3rd) row, from left to right, 2D transverse (resp.
coronal and sagittal) cross-sections of: noise-free BrainWeb phantom; initial
back projections (PSNR 23.85 dB); and final estimates of the magnitude via
i.i.d. (27.86 dB) and correlated degradation modeling (28.93 dB), respectively.
PSNR is for magnitude only, as the most informative component.
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the other one appears and fades during epochs #6–#10.
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