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Abstract—We propose a new approach to linear ill-posed inverse prob-
lems. Our algorithm stabilizes the inversion by enforcing a new statistical
constraint in a suitable feature space. We use the non-linear multiscale
scattering transform—a complex convolutional network which discards
the phase and thus exposes strong spectral correlations otherwise hidden
beneath the phase fluctuations. We apply the algorithm to super-resolution
and tomography with synthetic signals, and show that it outperforms
regularized methods and stably recovers the missing spectrum. Further,
we discuss the choice of the feature transform as a function of the operator
and input statistics, and we prove convergence of the proposed iterative
algorithm.

I. A NEW APPROACH TO INVERSE PROBLEMS

A standard inverse problem in imaging is to estimate x P X from
measurements y corrupted by noise b:

y “ �x ` b, (1)

with � being a singular operator so that the inversion is ill posed.
Examples of � are lowpass filtering and partial Radon transform.

The usual way to address ill-posedness is to search for a solution
which minimizes a regularized cost functional [1], [2]:

px “ argmin
uPX

1
2ky ´ �uk2 ` �hpuq, (2)

where the regularizer h is convex in u. Restriction to convex functionals
of this form may be a bottleneck when the problem is highly ill-posed.

We propose a formulation that is not based on a minimization of a
regularized cost function,1 but rather on iterative linear estimation in the
space of some feature transform �. We show that a particularly good
choice of � for many inverse problems is the scattering transform [3],
[4]. Scattering transform has a structure of a convolutional network with
complex wavelets as filters and complex modulus as the non-linearity.
Its outputs are made locally invariant to translations by averaging. By
eliminating the phase it yields coefficients with strong linear correlations.

For many �, solving the inverse problem can be rephrased as
recovering missing spectrum from known spectrum (see Fig. 1), and
the role of the regularizer is to stabilize this inversion (e.g. stabilize the
high frequencies). In what follows, we describe how we achieve such
stabilization in a statistical, data-driven manner.

Let A def“ tu : k�u ´ yk § ✏u be the set of admissible signals
(random vectors). The idea is to search for a signal px in A such that
applying any linear estimator to �px cannot improve the feature-space
MSE. Assuming � takes values in Rd, this can be written as follows:

px P A, (A1)
Er�pxs “ Er�xs, (A2)
Erp�pxqip�px ´ �xqs “ 0d, @i P t1, . . . , du . (A3)

The condition (A3) resembles the usual orthogonality relation,
although, importantly, it contains no data term—it simply states the
constraint on our estimator. The defined px is not linear in either domain.

More generally, the transform � should be adapted to � and the
input statistics; it could be learned or designed. We show (and it is not

1At least not in the usual sense where it is determined by a single realization.

difficult to see) that � should not be chosen linear. It is important to
note that it need not be invertible.

II. COMPUTING THE ESTIMATOR

To compute px, we define two operators acting on vectors in the
feature space. The first one, denoted P�A, is a projection onto �A—
the image of A under �. For any u P X , P�Ap�uq satisfies (A1).
Since � is non-linear, �A is in general not a convex set even when
� is linear. We implement P�A by projected gradient descent. The
second operator, denoted L, is a linear-minimum-mean-squared-error
(LMMSE) estimator of �x given some input data �u. For any u P X ,
Lp�uq satisfies (A2, A3). To compute L in practice, we use empirical
estimates of the involved first- and second-order statistics.

In general, for some u, P�Ap�uq will not satisfy (A2, A3), and
Lp�uq (or its preimage) will not satisfy (A1). Thus, not surprisingly,
we propose to iterate the two operators which gives the following
algorithm:

�xpk`1q “ P�A
`
L

`
�xpkq˘˘

. (3)

A signal-domain estimate can be computed as any vector in the preimage
x

pkq P �´1�xpkq. This inversion is again implemented by gradient
descent.

We prove that for many � the above iteration converges to a fixed
point satisfying (A1)-(A3). The analysis shows that (3) is a new kind
of non-convex alternating projection algorithm with unusual geometry.

III. EXPERIMENTS

In Fig. 2 we show preliminary results for synthetic signals in super-
resolution and tomography. As input we use Ising spin-glass realizations
[5] since they look like a mixture of shapes and texture, and Cox point
processes [6] for comparison with sparsity-promoting regularizations.
Point processes are sparse in the identity basis and thus present an ideal
signal for `1 norm minimization.

Fig. 2 shows that our approach produces results with significantly
better statistics than convex regularizations. Since we are not optimizing
the signal-domain `2 error, convex approaches give lower MSE due
to slight misalignment of the many singularities with our method.
However, convex results clearly have wrong spatial statistics, especially
at high frequencies. To demonstrate this quantitatively, we compare the
multivariate kurtosis [7] on 8 by 8 windows between the original image
and the various reconstructions, and show that it is reproduced much
more accurately by our method. This generalizes to other higher-order
spatial moments.In the super-resolution experiment the downsampling
is by a factor of 16 along each side and the results should be interpreted
in light of this rather severe (256-fold) data loss.

Fig. 3 gives reconstructions of a point process with a single
iteration of (3). Measurements were obtained by Gaussian filtering
and downsampling by a factor of 4 along each axis. The number of
non-zeros is set so that the `1 minimization does not have a unique
solution [8] which leads to artifacts, whereas the proposed method
recovers a signal with correct spatial statistics. A major part of ongoing
work is an analysis of the reconstruction methods in terms of optimal
transport metrics.
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Fig. 1. Known part of the Fourier transform with super-resolution measurements
(A); Radon transform uniformly subsampled in angle (B); Radon transform with
directions restricted to a cone (C).

Original Positive LS TV regularized Proposed

Fig. 2. 20 iterations of the proposed method compared with (positive) least-
squares inversions and TV-norm regularized reconstructions for super-resolution
(top) and tomography (bottom). The multiplier � (cf (2)) for the TV regularizer
was picked by hand to give best MSE. MSE top row (smaller is better): 0,
0.860e4, 0.797e4, 1.291e4; excess kurtosis top row (closer to 1760 is better):
1760, 85, 7861, 1290; MSE bottom row: 0, 6.57e3, 3.90e3, 7.19e3; excess
kurtosis bottom row: 1760, 2285, 3640, 1787.

Original  minimization Proposed

Fig. 3. Comparison with sparsity-promoting regularization for a point process
in super-resolution (single iteration).
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