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Abstract—High quality reconstructions from a small amounts of mea-
surements offers interesting possibilities in applications such as medical
imaging [18], single-pixel and lensless cameras [11] or fluorescence
microscopy [21]. This is possible due to techniques such as generalized
sampling [1], [10], [15], [23], and compressed versions of this [4], [11], as
well as methods based on data assimilation and additional information
modelled by PDEs [5], [6], [9]. All of these methods have in common that
the reconstruction quality depends highly on the subspace angle between
the sampling and the reconstruction space. Fortunately, one can show that
for binary measurements, modelled with Walsh functions and wavelets,
the relation between the amount of data sampled and the coefficients
reconstructed has to be only linear to ensure that the angle is bounded
from below and hence the reconstruction is accurate and stable.

I. MAIN RESULTS

During the last decades the connection between sampling and
popular reconstruction bases and frames such as wavelets [20],
shearlets [16] and curvelets [7] have been emphasised. In particular,
in many applications the samples are dictated by the physics of the
acquisition device, however, the signal may be best represented in
function systems as mentioned above. Thus, the desire to convert
sampling information to coefficients of the signal in X-let frames has
been a strong motivation to build new sampling and reconstruction
techniques. This includes the finite section method [13], [14], [17],
generalized sampling [1]–[3], [10], [15], [19], [22], [24] and data
assimilation techniques [5], [6], [9]. For the latter two schemes the
choice of the amount of data acquired according to the amount
of data reconstructed is crucial. This relation is called the stable
sampling rate, as it defines the amount of samples needed for a stable
and accurate reconstruction. We show that for the reconstruction
from binary measurements and wavelets the stable sampling rate
is linear. Binary measurements, after a simple subtraction trick,
can be converted to a 1 and −1 setup that is modelled by the
Hadamard transform. The kernel of the Hadamard transform is given
by Walsh functions. These measurements arise in several applications
as lensless camera and single-pixel cameras [11] and fluorescence
microscopy [21].

In the setting of this paper we deal with the reconstruction of a
function f ∈ L2([0, 1]d) from linear meausrements mi(f) = 〈si, f〉,
i ∈ N. The reconstruction space R is spanned by functions {ri}i∈N
and the sampling space S is spanned by functions {si}i∈N. The
corresponding spaces of the first N or M elements are denoted by
RN and SM . As reconstruction space we use boundary Wavelets
[8] due to their great representation properties. To model the binary
measurements we utilize Walsh functions [12].

Definition 1 (Walsh function): Let n =
∑
i∈Z ni2

i−1 with ni ∈
{0, 1} be the dyadic expansion of n ∈ R. Analogously, let x =∑
i∈Z xi2

i−1 with xi ∈ {0, 1}. The generalized Walsh functions in
L2(R) are given by

Wal(n, x) = (−1)
∑

i∈Z(ni+ni+1)x−i−1 . (1)

We extend it to functions in L2([0, 1]d) by the tensor product for
n = (nk)k=1,...,d, x = (xk)k=1,...,d

Wal(n, x) =

d⊗
k=1

Wal(nk, xk). (2)

Walsh functions obey a lot of useful properties in the dyadic analysis,
while wavelets are continuous in the decimal analysis. Therefore, the
two systems do not seem to work well together from a first glance.
Nevertheless, we show that the reconstruction from Walsh functions
with wavelets works very accurate and stable. Besides a good choice
of the sampling and reconstruction space the reconstruction method
plays the main role for satisfying results. Two main points to
compare reconstruction methods are the stability and accuracy. The
first is measured by the condition number κ and the second by the
difference to the optimal solution, i.e. the orthogonal projection on
the reconstruction space PRN .

Now, we consider two reconstruction methods, which are both
proven to be optimal. Moreover, they share the fact that the er-
ror bound depends on the subspace angle cos(ω(RN ,SM )) =

inf
r∈RN ,||r||=1

||PSM r||, ω(RN ,SM ) ∈ [0, π/2] between the sam-

pling and the reconstruction space. For the reconstruction with
generalized sampling GN,M (f) one has the error estimate

||f −GN,M (f)|| ≤ 1

cos(ω(RN ,SM ))
||f − PRN f || (3)

and the condition number κ is given by κ = 1/ cos(ω(RN ,SM )).
The reconstruction method A∗ published in [6] fulfils

||f −A∗(PSM f)|| ≤ 1

cos(ω(RN ,SM ))
dist(f,RN ). (4)

Hence, it it natural to investigate the relation between N and M such
that the subspace angle is bounded from below. This relation is called
the stable sampling rate, i.e.

Θ(N, θ) = min

{
M ∈ N : cos(ω(RN ,SM )) >

1

θ

}
. (5)

The main theorem shows, that the stable sampling rate is linear
for the case of Walsh functions and boundary Wavelets.

Theorem 1: Let S andR be the sampling and reconstruction spaces
of Walsh functions and boundary Wavelets in L2(Rd). If N = 2dR

with some R ∈ N then for every θ ∈ (1,∞) there exist Sθ such that
Θ(N ; θ) ≤ SθN = O(N), i.e. the stable sampling rate is linear.

With the results in [2], [3] we now have a broad knowledge about
the accuracy and stability for two major applications of sampling
theory, i.e. systems with Fourier samples and those with binary
measurements.
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