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Abstract—We propose a new solver for the sparse spikes deconvolution
problem over the space of Radon measures. A common approach to off-
the-grid deconvoluton considers semidefinite (SDP) relaxations of the total
variation (i.e. the total mass of the measure) minimization problem. The
direct resolution of this SDP is however intractable for large scale settings,
since the problem size grows as f2

c where fc is the cutoff frequency of
the filter. Our first contribution introduces an unconstrained dualization
of this semidefinite lifting, which has low-rank solutions. Our second
contribution is a conditional gradient (a.k.a. Frank-Wolfe) optimization
scheme with non-convex updates. This algorithm leverages both the low-
rank and the convolutive structure of the involved variable, resulting
in an O(fc log fc) complexity per iterations. Our numerical simulations
are promising and show that this algorithm converges in exactly k steps,
where k is the number of Diracs composing the solution.

I. INTRODUCTION

Our goal is to recover accurately the amplitudes ai and positions xi
of a discrete measure µ0 =

∑
i aiδxi given low-resolution and noisy

measurements y = Φµ0 + w. We model the degradation operator Φ
as an ideal low-pass filter with cutoff frequency fc. Thus, for any
measure on the torus µ ∈ M(T), we have Φµ =

∫
T ϕ(x) dµ(x),

where ϕ(x) = (e2iπkx)−fc≤k≤fc . This ill-posed inverse problem
can be tackled using total variation regularization, which generalizes
`1-regularization to measures. We consider the following problem:

µλ ∈ argmin
µ∈M(T)

1

2λ
||y − Φµ||2 + |µ| (T) (Pλ)

where the parameter λ > 0 should be adapted to the noise level ||w||.
Its dual formulation (Dλ) offers both practical and theoretical

insights on the solutions µλ. It aims at recovering a dual certificate
[2], [3], [6] of the form Φ∗pλ – which in our case is a trigonometric
polynomial – where pλ is the solution to

pλ = argmax
p∈C2fc+1

{
〈y, p〉 − λ

2
||p||2 ; ||Φ∗p||∞ ≤ 1

}
. (Dλ)

Primal-dual optimality conditions give a simple characterization of
the support and amplitudes of µλ, depending only on the roots
of a trigonometric polynomial: the support S must satisfy S ⊂
{x ; |Φ∗pλ(x)| = 1} (Fig. 1), and the amplitudes can be deduced
using aλ = (Φ∗SΦS)−1Φ∗S(y − λpλ), where ΦS restricts Φ to S.

II. LOW-RANK SEMIDEFINITE FORMULATIONS

Both problems (Pλ) and (Dλ) are numerically challenging: (Pλ)
is infinite-dimensional while (Dλ) has an infinite number of con-
straints. In this one-dimensional case however, (Pλ) can be cast as a
semidefinite program using the Caratheodory-Toeplitz theorem [10]:

Rλ ∈ argmin
R,r,α

α+
trR

n
+ || y

λ
+ 2r||2

s.t. R =

(
R r
rH α

)
∈ H+

n+1, R ∈ T
(P̃λ)

where n
def.
= 2fc + 1, and T is the set of Toeplitz matrices. The

coefficients pλ of the dual polynomial may then be retrieved from a

solution rλ of (P̃λ) through the optimality relation pλ = y/λ+ 2rλ.
An inspection of the proof in [10] reveals that the rank of the solutions
of (P̃λ) is bounded by the number of input spikes (Fig. 2). This low-
rank structure is crucial in the algorithm detailed in section IV.

III. TOEPLITZ RELAXATION

The interaction between the SDP and the Toeplitz constraints is
numerically challenging. We introduce a penalized approximation:

Rλ,ρ ∈ argmin
R,r,α

f(R) s.t.
(
R r
rH α

)
∈ H+

n+1, (P̃λ,ρ)

where f(R)
def.
= α+

trR

n
+ || y

λ
+ 2r||2 +

1

2ρ
||R− PT (R)||2

for some (small) relaxatation parameter ρ > 0.
Following an approach similar to [11], under some mild non-

degeneracy hypothesis, one can show that for ρ small enough, the
solutions of (P̃λ,ρ) have the same rank as those of (P̃λ). Numerical
observations confirm that this regime exists (Fig. 3), and that one can
then recover the solution of (P̃λ) with sufficient accuracy.

IV. ALGORITHM

We propose a Frank-Wolfe scheme [7] which exploits the low-rank
structure of the solutions, storing our iterates as R = zzH . We add a
non-convex step similar to [1], which consists in a gradient descent on
F : z 7→ f(zzH) – we use a BFGS. The performance of the method
is briefly described in Fig. 5.

set: z0 = [0 . . . 0]>, D0 s.t. tr(z?) ≤ D0 (bound on the domain)
for i = 1 : N (where N ≥ 2fc + 1 is fixed) do

1. Compute: vi = D0 arg min||v||≤1 v
> · ∇f(ziz

H
i ) · v

2. Update: ẑi+1 = [αizi, βivi],
where α, β = arg minα+β≤1 f(αziz

H
i + βviv

H
i )

3. Non-convex corrective step:
zi+1 = descent((z, F (z)) : z ∈ C(n+1)×(i+1))

end for
return p = y

λ
+ 2r, where

[
r
α

]
is the last column of zN+1z

H
N+1.

The first step amounts to finding the lowest eigenvalue of
∇f(ziz

H
i ). We use power iterations, which only require matrix-

vector multiplications. Owing to both the Toeplitz structure and the
low-rank factorization, these operations can be done in O(n logn)
using Fast Fourier Transforms.

When µ0 is composed of k spikes, and w/λ and λ are small, we
observe that k iterations suffice to reach the solution (Fig. 4).

V. CONCLUSION AND PERSPECTIVES

The proposed algorithm can be generalized to 2D, opening new
perspectives for the superresolution of images. In that case, the SDP
hierarchy does not collapse immediately, and one has to consider
higher relaxation orders [4]. However, due to its low complexity,
our method scales well with the dimension of the problem, and may
yield a good alternative to MUSIC and Prony’s method [8], [9] in
the bidimensional case, currently being implemented.



Fig. 1: Left: Noisy and low-resolution observations (in black). Right:
corresponding dual polynomial (in blue). The support of the measure
is retrieved by extracting the points where the polynomial reaches 1.

Fig. 2: (6 spikes, fc = 13, λ = 0.05, ||w|| = 0). Display of the
singular values of both the primal matrix (Rλ,ρ, in red) and its dual
counterpart (blue). The rank of the primal variable appears to be
much lower than the one of the dual variable.

Fig. 3: (5 spikes, fc = 13, λ = 0.05, ||w|| = 0.005||y0||). Behaviour
of solutions with respect to ρ. Left: trajectory of the roots of the dual
polynomial. When ρ = 0, the support may be reconstructed from
double roots, located on the unit circle. When ρ > 0, these may
split, but remain identifiable when ρ is small. Right: rank of Rλ,ρ,
averaged over small randomized variations around fixed positions.
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