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Abstract—In this work, we introduce new algebraic geometry
(AG) curves that can generate extremely fat matrices with low
coherence. The previous application of AG codes in matrix design
has been limited to binary matrices. Here, we devise a different
approach to achieve m × n complex-valued matrices. As n >
m2 in our matrices, the Welch bound is no longer achievable;
however, the coherence of our matrices surpass the Welch bound
only by a O(logm) factor. Moreover, our construction provides
flexibility in setting the number of rows and columns.

I. BACKGROUND

For a measurement matrix Φm×n, the coherence value µ(Φ)
is defined as

µ(Φ) := max
1≤i6=j≤n

∣∣〈φi,φj〉∣∣
‖φi‖2 ‖φj‖2

, (1)

where φi stands for the ith column of the matrix. For m ≤ n,
we know from Welch bound that µ(Φ) ≥

√
n−m
m(n−1) . Further,

the equality is not achievable for n > m2 [1].
Explicit construction of fat matrices with low coherence

has been an active field of research in the past years. The
introduced designs usually arise from structures in algebra
or combinatorics: in [2] polynomials of certain degrees are
used to construct binary measurements matrices. The same
technique has been applied to finite geometry and algebraic
codes in [3], [4], [5]. Various types of error correcting codes
has been considered for matrix construction; the list includes
BCH codes [6], [7], Reed-Muller codes [8], Reed-Solomon
codes [9]. Expander graphs are also useful in error correcting
codes and measurement matrix design [10]. Recently, designs
in combinatorics have become popular tools for matrix design
[11], [12].

II. PRELIMINARIES

Let p be an integer prime and let χ be an algebraic curve
with genus gχ defined by the polynomial ϕ(x, y) over the
finite field Fpα (assuming α ∈ N). If Nχ denotes the number
of roots of ϕ(x, y) in (Fpα)2 (point on χ), the Hasse-Weil-
Serre bound implies that [13]

|Nχ − pα − 1| ≤ gχb2pα/2c.

For a proper divisor Gχ of χ and distinct roots r1, r2, . . . , rs ∈
(Fpα)2 of ϕ(x, y), the range of the linear mapping T :
L(G)→ (Fpα)s defined by

T (f) =
(
f(r1), f(r2), . . . , f(rs)

)
, f ∈ L(G),

forms a linear code that is known as the algebraic geometry
code C(r1, . . . , rs : G) [13], [14]. Here, L(G) stands for the
Riemann-Roch space associated with G. If s, e and d represent
the length, dimension (uncoded length) and minimum distance
of this code, respectively, we know that [13]

e ≥ deg(G)− g + 1 and d ≥ s− deg(G). (2)

III. MAIN RESULT

We denote the infinity point of χ by R∞. If we set
G = βR∞ for arbitrary integer β, and apply the element-
wise trace mapping on C(r1, . . . , rs:βR∞), we obtain a new
code C̃(r1, . . . , rs:βR∞) ⊂ (Fp)s with parameters (s, ẽ, d̃).

Lemma 1. For the code C̃(p1, . . . , ps:βP∞) ⊂ (Fp)s we have
that

e ≤ ẽ ≤ α e , d̃ ≥ s− pα+1+Ab2pα/2c
p , (3)

where A = p gχ + 1
2 (p− 1)(β − 1).

To construct the sensing matrix, let {c̃j}p
ẽ−1

j=1 ⊂ (Fp)s with
c̃j = (c1,j , . . . , cs,j) be all code-words in C̃(r1, . . . , rs:βR∞)
such that c1,j = 0. By mapping the elements of Fp to the
integers {0, 1, . . . , p− 1}, we form the sensing matrix as

Φs×pẽ−1 = 1√
s

[
ej

2π
p ci,j

]
1≤i≤s
1≤j≤pẽ−1

. (4)

Theorem 1. Given max
{
2gχ−1 , logp n+gχ+1

}
≤ β < s,

the coherence of the above matrix can be bound by

µ
(
Φs×pẽ−1

)
≤ pα+1 + p+ pAb2pα/2c − ps

2s
.

For maximal curves with s = pα + gχb2pα/2c, Theorem 1
could be simplified as µ(Φ) / β+2gχ−1

2 p−
α−4
2 .

As an example of the above technique, we can obtain a
(3α + 2.3α/2)× 32α+2 matrix with

µ(Φ) ≤ 3 + 3α/2(12α+ 24)

2(3α + 3α/2+1)

by considering ϕ(x, y) = y2 − x3 − 2x− 1 over F3.
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