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I. INTRODUCTION

The Kaczmarz method [1], [2], [3] was initially proposed as
a row-based technique for reconstructing signals by finding the
solutions to overdetermined linear systems. Its usefulness has seen
wide application in irregular sampling and tomography [4], [5], [6]. In
recent years, several modifications to the Kaczmarz update iterations
have improved the recovery capabilities [7], [8], [9], [10], [11]. In
particular, signal sparsity was exploited in [12], [13] and low-rankness
in [14] to improve the rate of convergence in the overdetermined case
while also enabling recovery from underdetermined linear systems.

Consider the linear system of equations b = A(X), where X ∈
Rm×n is a rank r matrix of size m × n with r � min{m,n},
A : Rm×n → p is a linear operator that samples p measurements
from X, and b ∈ Rp is a measurement vector. The linear system
above can be written in vector form as b = Ax, where x ∈ Rmn is
a vectorization of X, and A = [a1a2 . . .ap]

T : Rmn → Rp is the
corresponding measurement matrix with rows aT

i for i ∈ {1 . . . p}.
Given an estimate xt of the signal x at iteration t, the Kaczmarz

method proceeds by projecting xt orthogonally onto the solution
space defined by row i of A, i.e.,

xt+1 = argmin
z

1
2
‖z− xt‖22 subject to aT

i z = b(i)

= xt + ai
b(i)−aT

i xt

‖ai‖22
.

(1)

In what follows, we denote by R(·) the reshaping operator that maps
between the vector and matrix forms of a signal, i.e., z := R(Z) and
Z := R∗(z), where R∗(·) is the adjoint operator.

II. A KACZMARZ METHOD FOR LOW RANK MATRIX RECOVERY

We propose a weighted Kaczmarz method that can recover low
rank matrices from linear measurements both in the overdetermined
and underdetermined regimes. Our method is inspired by the support
identification technique used in [12] for the recovery of k-sparse
vectors using weighted Kaczmarz iterations. The method in [12],
projects the iterate xt onto a weighted hyperplane from the constraint
set that favors the support St of the largest k entries of xt. More
precisely, the following update rule is used

xt+1 = argmin
z

1
2
‖z− xt‖22 subject to aT

i Wtz = b(i)

= xt +Wtai
b(i)−aT

i Wtxt

‖Wtai‖22
,

(2)

where Wt is a diagonal weighting matrix with Wt(j, j) = 1, j ∈ St

and Wt(j, j) = ω, 0 < ω < 1, j /∈ St.
In this work, we propose to project a weighted version x̃t of the

iterate xt onto the weighted hyperplane that favors the subspace of the
rank-r approximation of the matricization of xt. Let Xt ∈ Rm×n be
the matricization of the iterate xt, and denote by Ut ∈ Rm×r and
Vt ∈ Rn×r the singular vector matrices whose columns span the
row and column subspaces of the best rank-r approximation of Xt,

respectively. Also, let X̃t be the rank-r subspace weighted iterate
given by

X̃t = (1− ω̃)Pt(Xt) + ω̃Xt (3)

for some positive weight ω̃ < 1, where Pt(Xt) = UtU
T
t XtVtV

T
t

is the projection operator onto the subspace spanned by Ut and Vt.
Our low rank seeking Kaczmarz method then uses the following
projection

Xt+1 = argmin
Z

1

2
‖Z−X̃t‖2F s.t. aT

i R((1−ω)Pt(Z)+ωZ) = b(i),

(4)
where 0 < ω ≤ ω̃ < 1. The solution to (4) can be found by forming
the unconstrained Lagrangian and finding its minimizer using

Xt+1 = X̃t + (1− ω)Pt(R∗(aiλ)) + ωR∗(aiλ), (5)

where λ is the Lagrange dual variable given by

λ =
(
(1− ω2)aT

i R(Pt(R∗(ai))) + ω2‖ai‖22
)−1

×
(
b(i)− aT

i R((1− ω)Pt(X̃t) + ωX̃t)
)
.

(6)

We note that a major computational bottleneck is the singular
value decomposition (SVD) of the iterates Xt to compute Ut and
Vt. However, this cost could be mitigated using warm starts and
incremental SVD techniques [15]. Finally, we observed that applying
the weighting step (3) with ω̃ ≈ 0.95 in the sparse case of [12] results
in a significant improvement in performance compared to (2) alone.

III. NUMERICAL EVALUATION

We test the recovery performance of our proposed low rank Kacz-
marz method by recovering an m×n matrix X with m = 100, n =
200 and rank 5 from standard Gaussian measurements both in the
overdetermined and underdetermined regimes. Under both regimes,
we decay the weights according to ω̃ = ω = 1 −

√
t

tmax+m+n
.

We observed that nearly identical performance is achieved if ω̃ is
kept constant at any value in [0.1, 0.9]. In the overdetermined case,
we acquire p = 5mn measurements and compare the convergence
rate in terms of the relative error ‖Xt−X‖F

‖X‖F
with that of standard

Kaczmarz [3] and the adaptive step-size Bregman approach (SVT)
of [14]. Fig. 1 illustrates the faster convergence observed by our
proposed method (Low Rank Kaczmarz) compared to the reference
methods for tmax = 2p. In the underdetermined case, we acquire
p = mn/5 measurements. Fig. 2 compares the performance of the
above schemes using tmax = 40p with the batch singular value
projection (SVP) algorithm [16], where every iteration uses p times
the number of measurements relative to the Kaczmarz methods. The
circles indicate the reconstruction performance of SVP over its 40
iterations. We also evaluated the recovery performance in the presence
of additive white Gaussian noise e such that ‖e‖2

‖Ax‖2
= 10−2 and

illustrate the recovery performance in Figs. 3 and 4. We observed that
bounding ω̃ and ω above 0.5 results in a more robust reconstruction
and helps prevent overfitting the noise.
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Fig. 1: Reconstruction performance in the overdetermined regime p =
5mn with no noise.
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Fig. 2: Reconstruction performance in the underdetermined regime
p = mn/5 with no noise.
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Fig. 3: Reconstruction performance in the overdetermined regime p =
5mn with relative noise level at 10−2.
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Fig. 4: Reconstruction performance in the underdetermined regime
p = mn/5 with relative noise level at 10−2.
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