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Abstract—The acclaimed sparse representation model has led to
remarkable results in various signal processing tasks. However, despite
its initial purpose of serving as a global prior for entire signals, it
has been commonly used for modeling low dimensional patches due
to the computational constraints entailed when deployed with learned
dictionaries. The emerging convolutional sparse coding (CSC) model
comes as a globally-aware alternative. Several works have presented
algorithmic solutions to the global pursuit problem under this new model,
yet very few truly effective guarantees are known for their success. In
this work, we address the theoretical aspects of the CSC model, providing
the first meaningful answers to questions of uniqueness of solutions and
success of pursuit algorithms. Moreover, we further extend this analysis to
the noisy regime, addressing the stability of the sparsest solutions and of
the associated algorithms. Finally, we demonstrate practical approaches
for solving the global pursuit problem via simple local processing.

I. INTRODUCTION

The sparse representation model assumes a signal X can be (well)
approximated by the product of a dictionary D and a sparse vector Γ.
The convolutional counterpart further imposes a specific structure on
the matrix D – that it is composed of shifts of a local dictionary DL.
Recently, this model has been shown to provide a variety of useful
applications [1]–[7]. However, the theoretical aspects of this model
were disregarded, with the assumption that the original sparse theory
holds for this model as well [8]–[10]. These results rely on properties
of the dictionary D, such as its mutual coherence, and on the maximal
number of total non-zero entries in the global representation vector.

Consider a sparse vector Γ which represents a global (convolu-
tional) signal. Assume further that this vector has a few non-zeros.
If these were to be clustered together in a given portion (stripe) γi,
as the one in Figure 1, the local patch corresponding to this stripe
would be very complex, and pursuit methods would likely fail in
recovering it. On the contrary, consider the case where these non-
zeros are spread all throughout the vector Γ. This would clearly imply
much simpler local patches, facilitating their successful recovery. This
simple example comes to show the futility of the traditional global
`0-norm in the convolutional setting, and it will be the pillar of our
intuition throughout our work.

II. FROM GLOBAL SPARSITY TO LOCAL CONSTRAINTS

The following is a measure that provides a local notion of sparsity
within a global sparse vector.

Definition 1. Let the `0,∞ pseudo-norm of a global vector Γ be
‖Γ‖0,∞ = maxi ‖γi‖0.

In words, this quantifies the number of non-zeros in the densest stripe
γi of the global Γ. Intuitively, by constraining the `0,∞ norm to be
low, we are essentially limiting the sparsity of all the stripes γi.
Armed with this definition, we define the P0,∞ problem:

(P0,∞) : min
Γ

‖Γ‖0,∞ s.t. DΓ = X.
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When dealing with a global signal, instead of solving the P0 problem
as is commonly done, we aim to solve the above defined objective
instead. Note that we are not limiting the overall number of zeros in
Γ, but rather putting a restriction on its local density.

III. UNIQUENESS AND RECOVERY GUARANTEES

Does a unique solution to the P0,∞ problem exist? and under which
circumstances? In the first part of our work [11] we show that under
simple local sparsity constraints (enforced via the `0,∞ norm) the
answer to this question is positive. Interestingly, this unique repre-
sentation can be also be recovered using popular pursuit algorithms
such as the Basis Pursuit (BP) and the Orthogonal Matching Pursuit
(OMP). This is summarized in the following theorem:

Theorem 2. Given the system of linear equations X = DΓ, where
D is a convolutional dictionary with mutual coherence µ(D), if a
solution Γ exists satisfying ‖Γ‖0,∞ < 1

2

(
1 + 1

µ(D)

)
, then OMP

and BP are guaranteed to recover it.

Importantly, the local constraint provides global guarantees that
scale with the signal dimension, thus yielding useful bounds.

IV. STABILITY RESULTS

In the second part of our work [12] we consider signal pertur-
bations and model deviations by extending the P0,∞ problem to a
relaxed P ε0,∞ version. We address questions of stability of the sparsest
solutions to this problem and the ability of pursuit algorithms – both
greedy and convex – to approximate them. To this end, we generalize
classical definitions, such as the RIP, to the convolutional model, and
connect existing notions, such as the ERC, to our setting. As expected,
from our analysis it follows that meaningful pursuit stability bounds
arise only once one assumes locally-bounded noise. Intuitively, if
a signal is severely contaminated in a small local area, any global
pursuit will likely fail.

V. PRACTICAL ASPECTS

Note that the above theoretical results show that global pursuit
algorithms are guaranteed to recover the exact (or approximate)
solutions to the P0,∞ (or P ε0,∞) problem. However, these problem
are often too big to be tackled directly. On the algorithmic side, we
demonstrate how to harness the local-global connections in the CSC
model to solve global pursuit using only local operations. This offers
a first of its kind bridge between global modeling of signals and their
patch-based local treatment.
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Fig. 1: The ith local system of equations xi = Ωγi, where xi is a single patch, Ω is the stripe dictionary and γi is a stripe vector.
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