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Abstract—We consider the problem of estimating a high dimensional
signal from noisy low-dimensional linear measurements, where the
desired unknown signal exhibits a group-sparse structure. Assuming the
non-zero groups of the group-sparse signal possess enough strength and
are generated according to certain statistical assumptions, we provide
conditions to guarantee that the signal support can be exactly recovered
via solving the group Lasso problem.

I. INTRODUCTION

Let the measurement vector y ∈ Rn be generated according to

y =Xβ∗ +w, (1)

where X ∈ Rn×p is a (given) dictionary, β∗ ∈ Rp is an unknown
signal, and w ∈ Rn represents noise and/or model inaccuracies. This
work studies the high dimensional scenario (p � n) in which the
signal β∗ is group-sparse. Specifically, assuming there exists a pre-
defined partition of β∗ as (β∗)T =

[
(β∗I1)

T (β∗I2)
T · · · (β∗IG)T

]
,

where β∗Ig ∈ Rdg for g ∈ [G] := {1, · · · , G} denotes the dg entries
of β∗ corresponding to the index set Ig ⊂ [p], then a small fraction
of the groups, say s out of the entire G ones, are non-zero. Given this
assumption, a well-studied estimator is the group Lasso estimator

β̂ = arg min
β∈Rp

1

2
||y −Xβ||22 +

G∑
g=1

λg||βIg ||2, (2)

where λg > 0 is a regularization constant. Numerous studies provide
statistical guarantees for problem (2) when the measurements are
generated as in (1). Some works assume X is generated according
to a random (e.g. Gaussian) distribution [1]–[3], which narrows down
the applicability of the recovery result. In terms of the requirements
for successful recovery, various conditions are proposed so far: the
group RIP condition of [4] and the restricted group eigenvalue
condition of [5], [6] are among the most popular ones. Since
verifying such conditions for structured measurement matrices can
be computationally prohibitive, we do not base our analysis on them
and instead use the concept of block coherence (see Definition I.1)
which is computable in polynomial time [7]. The recent study [8]
analyzes group Lasso estimation method using similar conditions as
we consider here. However, it focuses on regression error instead of
support recovery, which constitutes the primary focus of this study.

Definition I.1. For the dictionary X = [XI1XI2 · · ·XIG ], with
XIg ∈ Rn×dg , the block coherence constant µB(X) is defined as

µB(X) := max
1≤g 6=g′≤G

‖XT
IgXIg′ ‖2→2, (3)

where ‖ · ‖2→2 denotes the matrix spectral norm and moreover the
intra-block coherence parameter µI(X) is

µI(X) := max
g∈[G]

‖XT
IgXIg − Idg×dg‖2→2. (4)
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II. MAIN RESULT

Similar to [8], we begin by making some statistical assumptions.
M1) The group-level support of β∗, denoted by G∗ ⊆ [G], com-

prises s := |G∗| non-zero blocks, whose indices are selected
uniformly at random from all subsets of [G] that are of size s.

M2) The non-zero entries of β∗ are equally likely to be positive or
negative: E sign(β∗j ) = 0 for j ∈ [p].

M3) The non-zero blocks of β∗ have statistically independent “di-
rections.”

Given these assumptions and dmin := ming∈[G] dg , dmax :=
maxg∈[G] dg , d∗G =

∑
g∈G∗ dg , our main contribution is [9], [10]:

Theorem II.1. For the model in (1) with w ∼ N (0, σ2In×n) if

1) µI(X) ≤ c0 and µB(X) ≤
√

dmin
d2max

c1
log p

,

2) |G∗| ≤ min{ c2 G

‖X‖22→2 log p
, dmin
d2max

c3 µ
−2
B

(X)

log p
},

3) ‖β∗Ig‖2 ≥ 10σ(1 + ε)(
√
d∗G +

√
dg) max{1,

√
s

dmax log p
},

all hold for some non-negative constants c0, c1 ≤ 0.004, c2 ≤
1
14
( 1
4
− 3 c0 − 48 c1), c3 = min{c2, 0.0004}, and some

ε ≥
√

(1 + µI(X)) log(pG)

dmin
,

then the solution β̂ of (2), with λg = 4σ(1 + ε)
√
dg for every

g ∈ [G], is unique and has the same group-level support as β∗ and

‖β̂Ig − β
∗
Ig‖2 ≤ 5σ(1 + ε)(

√
dg +

√
d∗G), ∀g ∈ G(β

∗),

with probability at least 1− 12 p−2 log 2.

III. NUMERICAL EXPERIMENTS

Assume the dictionary X is the concatenation of two orthonormal
bases, i.e. X :=

[
X(1)

∣∣X(2)

]
∈ Rn×2n, where X(1) ∈ Rn×n is

the discrete cosine transform (DCT) matrix and X(2) ∈ Rn×n is the
identity matrix. The authors leveraged this widely-studied dictionary
in the context of structural anomaly detection using propagating
wave-field measurements [11], where X(2) was column-wise parti-
tioned into groups of size dg = d andX(1) was divided into singleton
groups of size dg = 1. For such X with the specified partition, it
can be shown that µB(X) ≤

√
4d/n, µI(X) = 0, ‖X‖22→2 = 2,

and G = n (1 + 1/d). Substituting these in the expressions of the
above theorem implies that if

√
n

log(2n)
≥ 2

√
d3

c1
, s ≤ c2n

d3 log(2n)
, and

‖β∗Ig‖F ≥ 10σ(1+ε)
(√

d+
√
s1 + s2 d

)
max

{
1,

√
s

d log(2n)

}
for all g ∈ G∗, hold simultaneously for ε ≥

√
2 logn, then exact

recovery is possible. Fig. 1 shows the result of simulations designed
to investigate the above relationship between the number of non-zero
groups s in β∗ and their magnitudes {‖β∗Ig‖F }g∈G∗ .



Fig. 1. The phase transition depicts the signal strength, controlled by the
positive scalar α in y = αXβ∗+w, where β∗ is generated according to M1
to M3 (with its non-zero entries drawn from standard Gaussian distribution)
and w ∼ N (0, In), versus the number of non-zero groups s. Here we have
set n = 104, d = 4, λ1 = 10 and λ2 = 10

√
d, where the regularization

constants correspond to the groups over the DCT and identity components,
respectively. The plot shown is obtained after averaging over 100 trials.

REFERENCES

[1] Francis R Bach, “Consistency of the group lasso and multiple kernel
learning,” The Journal of Machine Learning Research, vol. 9, pp. 1179–
1225, 2008.

[2] Guillaume Obozinski, Martin J Wainwright, and Michael I Jordan,
“Support union recovery in high-dimensional multivariate regression,”
The Annals of Statistics, pp. 1–47, 2011.

[3] Nikhil S Rao, Ben Recht, and Robert D Nowak, “Universal measure-
ment bounds for structured sparse signal recovery,” in International
Conference on Artificial Intelligence and Statistics, 2012, pp. 942–950.

[4] Junzhou Huang and Tong Zhang, “The benefit of group sparsity,” The
Annals of Statistics, vol. 38, no. 4, pp. 1978–2004, 2010.

[5] Karim Lounici, Massimiliano Pontil, Sara Van De Geer, and Alexandre B
Tsybakov, “Oracle inequalities and optimal inference under group
sparsity,” The Annals of Statistics, pp. 2164–2204, 2011.

[6] Sahand Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin
Yu, “A unified framework for high-dimensional analysis of m-estimators
with decomposable regularizers,” Manuscript, University of California,
Berkeley, Dept. of Statistics and EECS, 2011.

[7] Yonina C Eldar, Patrick Kuppinger, and Helmut Bölcskei, “Block-sparse
signals: Uncertainty relations and efficient recovery,” IEEE Transactions
on Signal Processing, vol. 58, no. 6, pp. 3042–3054, 2010.

[8] Waheed U Bajwa, Marco F Duarte, and Robert Calderbank, “Condition-
ing of random block subdictionaries with applications to block-sparse
recovery and regression,” IEEE Transactions on Information Theory,
vol. 61, no. 7, pp. 4060–4079, 2015.

[9] Mojtaba Kadkhodaie Elyaderani, Swayambhoo Jain, Jeff Druce, Stefano
Gonella, and Jarvis D. Haupt, “Group-level support recovery guarantees
for group lasso estimator, with applications to structural health monitor-
ing,” In Preparation.

[10] Mojtaba Kadkhodaie Elyaderani, Swayambhoo Jain, Jeff Druce, Stefano
Gonella, and Jarvis D. Haupt, “Group-level support recovery guarantees
for group lasso estimator,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2017.

[11] Mojtaba Kadkhodaie, Swayambhoo Jain, Jarvis Haupt, Jeff Druce,
and Stefano Gonella, “Locating rare and weak material anomalies
by convex demixing of propagating wavefields,” in Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015 IEEE
6th International Workshop on. IEEE, 2015, pp. 373–376.


