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3Department of Computer Science, University College London, London

Abstract—We present a regularizer for learning low rank
matrices. It is obtained by applying the Berhu penalty
function [1] to the spectrum. We link the regularizer to
previous ones for structured sparsity and derive its prox-
imity operator. In numerical experiments the spectral Berhu
performs favourably over the standard methods. We discuss
how the regularizer can be extended to the tensor setting.

I. PROBLEM

We are interested in learning matrices or tensors from a
set of linear measurements. Applications range from col-
laborative filtering, medical imaging, to natural language
processing, and many more. We focus on the matrix case
and later outline the extension to tensors. We prescribe
a linear operator A : Rd1×d2 → Rm, representing a set
of measurements obtained from a target matrix W ∗ as
y = A(W ∗) + η, where η is some disturbance noise.
This framework includes various settings, depending on
the choice of the operator A, such as matrix completion
and multitask learning. We attempt to recover W ∗ from
the data (A, y), by solving the optimization problem

min
W∈Rd1×d2

{
‖y −A(W )‖22 + γΩ(W )

}
(1)

where γ is a positive regularization parameter, which may
be chosen by cross validation. The role of the regularizer
Ω is to encourage matrices with few degrees of freedom
and in this work we are interested in low rank matrices.
To this end a standard convex regularizer is given by the
trace (or nuclear) norm, i.e. the sum of the singular values
or equivalently the `1 norm (Lasso) of the vector σ(W )
containing the singular values of W in non-increasing
order, i.e. Ω(W ) = ‖σ(W )‖1.

II. REGULARIZER

In this work we propose a different regularizer which
is related to the convex relaxation of the cardinality
combined with the `2 norm of the spectrum of a matrix,
and give a link to the k–support norm [2]. The regularizer
is given by the convex envelope hε of the function
rank(W ) + ε

2
‖W‖2Fr, where ε is a positive parameter

selected by cross validation. By von Neumann trace
inequality, hε(W ) = gε(σ(W )), where gε is the convex

envelope of the function card(·)+ ε
2
‖·‖22. The regularizer

gε is equal to the Berhu function (reverse Huber) [1] and
it has been motivated by [3] as a better relaxation of the
Elastic Net. Fig. 1 depicts the Berhu penalty and Fig.
2 illustrates its behaviour for different choices of ε. The
function gε can be written as a sum of univariate functions
of the same kind and with some abuse of notation we
write gε(x) =

∑min(d1,d2)
i=1 gε(xi). We use a technique

from [4] to express gε as an infimum of quadratics, i.e.

gε(xi) =
√
ε/2 inf

{(x2i
θ

+ θ
)

: θ ∈
(
0,
√

2/ε
)}

.
The above observation and the infimum formulation

of the k–support norm [5] allow us to show that the
regularization path of the Berhu function contains the
regularization path of the k–support norm. Moreover, the
proximity operator of γgε can be computed in a close
form and is depicted in Fig. 3 for γ = 1, alongside
the proximity operators of the Lasso and the Elastic Net.
A natural generalization of the Berhu function is given
by the convex envelope of card(·) + ε

p
‖ · ‖pp, where

p > 1 is a further parameter allowing us to better fit the
spectral decay of the underlying model. In this case, the
generalized Berhu is related to the (k, p)–support norm
outlined in [6].

III. NUMERICAL EXPERIMENTS

We compared the spectral Berhu to the trace norm, the
matrix Elastic Net and the spectral k–support norm in
a low rank matrix completion problem. We reproduced
the same experimental setting described in [5, Sec. 7.1].
The averaged results are shown in Table I, where the
Berhu penalty, similar to the spectral k–support norm,
outperforms the other methods.

Ongoing work is studying the practical value of this
approach for tensor estimation. In this case W is a
d1 × · · · × dN tensor and A : Rd1×···×dN → Rm. Fol-
lowing [7] we may use the sum of the Berhu regularizer
gε applied to the spectrum of the matricizations, i.e. we
may take Ω(W ) =

∑N
n=1 gε(σ(W(n))), where W(n) is

the nth matricization of the tensor W . The matrix case
is recovered for N = 2.



Fig. 1: Berhu and the corresponding Elastic Net penalty
(ε = 0.5).

Fig. 2: Berhu for different parameters ε (ε1 < ε2 < ε3).

Fig. 3: Proximity operators: Lasso is not able to shrink
large values to preserve the data correlation, encouraged
by the Elastic Net; Berhu penalty has the advantage of
shifting medium and shrinking large values in a separate
way (ε = 0.5).
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