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Abstract—In this work we present a novel method for gener-
ating images using sparse representations. The proposed method
learns a dictionary and estimates the probability distribution of
the sparse vectors from a given set of images. The probability
distribution of the sparse vectors is represented as a product
of two functions: one describing the support, and the other for
the coefficients, given the support. We model the distribution
of the support using a Markov network with pairwise factors,
and assume that the atom coefficients, given the support, are
normally distributed. We generate new images by drawing sparse
vectors from the estimated probability and multiplying them by
the pre-learned dictionary. We demonstrate the proposed method
on three different sets of images: (i) MNIST, (ii) set of aligned
faces, and (iii) set of unaligned faces from the MegaFace database.

I. INTRODUCTION

In recent years we see increased interest in methods that are
able to generate images. Texture images can be synthesized
using several models, such as Gaussian [1], sparsity [2],
[3], neural network [4], and other [5]–[8]. Of these, neural
networks have been reported to have the ability to go beyond
texture and generate images with content: handwritten digits,
faces and even more complicated images [9]–[14]. Indeed,
only few methods, excluding neural networks, show such a
generative ability [15], [16]. When it comes to the sparsity
model, only texture generations are reported [2], [3].

In this work we propose a novel sparsity based method
for generating images with content. Given a set of example
images, our model learns a dictionary, finds sparse repre-
sentations of all the images in this set, and estimates the
probability distribution of the sparse vector. New images are
generated by drawing new sparse vectors from the estimated
distribution, multiplying the obtained vectors by the dictionary
and clipping the pixels values to range [0, 255]. Clearly,
the greatest challenge is to estimate the Probability Density
Function of the sparse representations. We present here an
efficient method for achieving this goal.

II. OVERVIEW OF THE PROPOSED MODEL

The sparsity model assumes that images can be represented
as linear combinations of the small number of atoms from
some well-chosen dictionary. Given a set of N images {xi},
their sparse representations {γ

i
} over some dictionary D, and

the dictionary itself can be found by solving:

min
D,{γi}

∑
i=1

‖xi−Dγi‖22 s.t ‖γi‖0 ≤ k, 1 ≤ i ≤ N, (1)

where k is the maximum allowed number of atoms. Sparsity
model has been shown to be useful for solving a variety of
image restoration problems. However image generation using

this model is not straightforward, because combinations of
k randomly chosen atoms do not create valid images, see
examples in Figure 1. Therefore, for the image generation
task, some model that captures the statistics of the γ vectors,
i.e. P (γ), is needed. We can write P (γ) = P (a)P (u|a),
where P (a) is a distribution of the support, and P (u|a) is a
distribution of the coefficients, given the support. The vector
a holds locations of the k non-zeros of the γ, and the vector
u contains their corresponding coefficients, γaj = uj for
1 ≤ j ≤ k . We restrict the coefficients to be positive, uj > 0,
and refer to positive and negative atoms as to different atoms,
thereby doubling the dictionary size.

We model the support distribution P (a) using fully con-
nected Markov network with factors over all single variables
ψ(ai) and over all pairs of variables φ(ai, aj) [17]. This
model represents the probability function P (a) as a normalized
product of all factors, P (a) = 1

c

∏
i ψ(ai)

∏
i,j φ(ai, aj),

reducing the number of P (a) parameters from Mk to about
M2, where M is a dictionary size. We note that the factors
ψ(ai) and φ(ai, aj) are used only for reducing dimensionality,
and have no meaning of marginal distributions. Unfortunately,
in our case, the number of parameters is still significantly
greater than the number of images, M2 � N . Therefore we
use an additional approximation replacing the factors ψ(ai)
and φ(ai, aj) with marginal probabilities: ψ(ai) ≈ P (ai), and
φ(ai, aj) ≈ P (ai,aj)

P (ai)P (aj)
. Our final expression for P (a) is

P (a) =
1

c

∏
i

P (ai)
∏
i,j

P (ai, aj)

P (ai)P (aj)
. (2)

The marginal pairwise probability P (ai, aj) can be easily
learned from data, since in N supports we have 0.5k(k−1)N
pairs of atoms, which is quite a large number.

We assume that given the support, atom coefficients are
normally distributed, i.e. P (u|a) = N (µa,Σa). For generating
a new image x̃, we draw a support ã from the P (a) in
Equation (2) using Gibbs sampling. Then we find intersections
of ã and supports of the given images, {bi} = {ai} ∩ ã. We
refer to the coefficients of the intersections {γbi} as data with
missing values, and learn from them the µã and Σã using EM
(Expectation Maximization) algorithm.

We apply the proposed scheme on three different sets of
images: (i) MNIST [18], (ii) set of 4400 aligned faces of size
64× 64 pixels, and (iii) set of 200,000 unaligned faces, down-
scaled to size of 64× 64, from the MegaFace database [19].
For the MNIST we learn dictionary with K-SVD [20], and
for faces with OSDL [21]. Simulation results are shown in
Figures 2, 3 and 4.
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Fig. 1. Randomly chosen combinations of k atoms: 1(a) – digit three before
clipping, 1(b) – digit three after clipping, 1(c) – digit eight before clipping,
1(d) – digit eight after clipping, 1(e) – aligned face, 1(f) – unaligned face.
Note: both faces look very similar before and after clipping.

Fig. 2. In each column left digits are generated using our scheme, right digits
are their nearest neighbors from the database.

Fig. 3. Aligned faces. Faces in the first and third rows are generated using
our method. The second and fourth rows show the nearest neighbors of the
synthesized faces.
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