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Abstract—We propose an iterative joint-sparse signal recovery algo-
rithm for compressive sensing with multiple measurement vectors. Our
algorithm is an iterative procedure to solve `2,1-norm minimization with
side information that is self-produced from the reconstructed signals
at previous iterations instead of being given in advance. Our side
information is designed with a theoretical foundation to further reduce
the required number of measurements for successful recovery.

I. INTRODUCTION

In the context of compressive sensing (CS) [1]–[3], multiple
measurement vectors (MMVs) [4]–[7] has become a popular issue,
where more than one signals are sensed by the same sensing matrix
and these signals have joint-sparsity. Let S ∈ Rn×l be the unknown
matrix of l (> 1) original signals to be sensed by a sensing matrix
Φ ∈ Rm×n (m < n), and let the matrix of measurement vectors be
Y ∈ Rm×l, where Y = ΦS. Suppose there exists an orthonormal
basis Ψ such that S = ΨX̄ , where X̄ ∈ Rn×l is k joint-sparse and
the ground truth. Given a dictionary A = ΦΨ and observation Y ,
the joint-sparse signal recovery problem can be solved efficiently via
convex minimization as:

(ML1) min
X
‖X‖2,1 s.t. Y = AX.

We say the problem (ML1) succeeds if the unique optimal solution
of (ML1) is the ground truth, X̄ .

A. Related Work

Wang and Yin [8] proposed iterative support detection via `1-
minimization under the SMV model. At each iteration, it is first
to estimate the support set via thresholding the recovered signal
at the previous iteration. Then, the estimated support set treated
as side information is fed into weighted `1-minimization for signal
recovery. Chen and Huo [4] discovered that the required number
of measurements in the MMVs problem is related to not only the
sparsity but also the rank of observation Y . Motivated by [4], Davies
and Eldar [6] proposed another greedy algorithm, called RA-ORMP.
In [9], we studied when problem (ML1) with prior information
succeeds and derive the phase transition of success rate inspired by
[10], [11].

B. Contributions

We propose an iterative convex solver that explores the side
information, which is self-produced from the output of solving
(ML1). Compared with the traditional solver [8] based on weighted
`1-minimization, the side information in our solver can include not
only the support set but also the signal types. Especially, the side
information originated from signal types is potential to let the number
m of measurements be smaller than sparsity k (i.e., m < k). This
improvement transcends the performance limit of greedy algorithms
with m = k.

II. PROPOSED ALGORITHM: MIC

We present an MMVs Iterative Convex solver (MIC). Let X̃i and
Wi be the results at ith iteration. Our algorithm is depicted as follows:

1) Input: X̃0 = 0, Y , A, k, c1, ε, λ, and i = 0. Output: X̃ .
2) Side information prediction:

Wi =

{
0, if i = 0,

c1 × sign(X̂i), otherwise,
(1)

where c1 is used to enhance the strength of side information
and X̂i = arg minX ‖X − X̃i‖F s.t. |supp(X)| = k.

3) Signal reconstruction: Let X̃i+1 = arg minX ‖X‖2,1 +
λ‖X −Wi‖2,1 s.t. Y = AX .

4) Stopping criterion: Output X̃ = X̃i+1 if ‖X̃i+1− X̃i‖F ≤ ε;
otherwise, i = i+ 1 and go back to Step 2.

The algorithm involves a major component that is side information
prediction. By Theorem 3.4 in [9], Wi and c1 in Eq. (1) are
designed to decrease the required number of measurements for
recovery. However, at the first iteration, since we don’t have any side
information about the original signal in advance, the initial matrix
W0 is set to a zero matrix. In other words, the first side information
is predicted by the problem (ML1).

If (ML1) model fails to reconstruct the ground truth, we may
assume X̃i = X̄ + Z, where Z ∈ null(A, l) = {Z|AZ = 0},
because X̄ + Z is an optimal point of the problem (ML1). On the
other hand, given a Gaussian random matrix A, spark(A) = m+ 11

almost surely implies |supp(Z)| ≥ m. Moreover, since the energy
of Z will distribute uniformly on at least m rows, it may not be
sufficient to influence the values of X̄ when X̄ is sparse enough or
m is not so small. Therefore, the best k-term approximation of X̃i

still can identify the support set of X̄ .

III. SIMULATION

We compare MIC with RA-ORMP [6] and (ML1) with two types
of signals: (1) non-zero entries drawn from ±1 with equal probability
and (2) Gaussian distribution. The verification procedure below was
repeated 100 times for each set of parameters, composed of m and
k, under l = 5, n = 100, and stopping criterion ε = 10−3.

1) Construct X̄ according to one of two signal types.
2) Draw a standard normal matrix A ∈ Rm×n to sample signals.
3) Run the proposed MIC algorithm to output X̃ .
4) Declare success if ‖X̄ − X̃‖F ≤ ε.

In Figs. 1 and 2, we show the results with l = 5 for random signal
and binary signal, respectively. It is found that MIC outperforms RA-
ORMP because MIC can achieve the performance limit m = k under
small l while RA-ORMP requires larger l to utilize the information
of rank. MIC also improves (ML1) remarkably.

1Spark(A) = min |I|, where I ∈ I = {I|AIv = 0 and v 6= 0, I ⊆
2[n]/{∅}.}, AI is a submatrix of A, and [n] = {1, 2, ..., n}.
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Fig. 1. Phase transition diagram of successful probability for random
signal. (a) Proposed method MIC. (b) RA-ORMP. (c) Problem (ML1). (d)
Comparison of phase transition curves achieving 50% successful probability.
(Best viewed on a color display.)
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Fig. 2. Same setting in Fig. 1 but for binary signal.
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