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Greedy algorithms have been used extensively in statistical in-
ference and signal processing to provide fast approximate solutions
to complex inference problems. One of the most prevalent greedy
methods is the Matching Pursuit (MP) family of algorithms (e.g.
Orthogonal Matching Pursuit; OMP [1], [2]) for solving sparsity-
regularized least-squares optimization programs. Essentially, these
methods seek to invert a system of linear equations, i.e. finding a
vector x ∈ RN from a vector y ∈ RM such that

y = Ax+ ε, (1)

where the columns Ak ∈ RM of the matrix A dictate how the
elements of the vector x effect the observation vector y, and ε
represents the observation noise. MP methods iteratively solve for
x by greedily constructing a subset Γ of the columns of A that
represent y. At each iteration, these methods add the column Ak

that has the largest correlation with the residual of the observations
after subtracting the contributions from the current representational
subset r = y −

∑
k∈ΓAkxk. Variants of this basic formula choose

the new column(s) to add and construct the residuals in different
ways [1], [3], however they all rely on knowing the matrix A.

In some applications, precise information about A is not available,
however approximate information is known. In such cases, access
to multiple measurement vectors yt for t = 1 . . . T with the same
decomposition can compensate for this deficiency. We extend here
the MP framework to address cases where the true, unknown A can
be approximated by a known Ã. Ideally, we seek to optimize{

Â, X̂
}

= arg min
A,X

[∥∥∥Y −AXT
∥∥∥2

F
+ λ2‖A− Ã‖2F

+

T∑
k=1

(λ1‖xk‖2 + λsp‖xk‖1)

]
, (2)

Where Y = [y1, . . . ,yT ], X = [x1, . . . ,xT ]. We solve (2) as a
greedy OMP algorithm by including an additional shape-projection
step adapts the idealized templates to the measurements (addressing
the second term in (2)). Denoting Tλ(·) as the hard-thresholding
operator, andM(·) as a locality mask (i.e. zeroing out values outside
of a certain region), the resulting Sparse Convolutional Iterative Shape
Matching (SCISM) algorithm is summarized in Algorithm 1.

The SCISM algorithm was motivated by the application of fluo-
rescence two-photon microscopy (TPM) for calcium imaging [4]. In
TPM calcium imaging, neurons are imaged in-vivo by introducing
fluorescing proteins into the cells that react with the calcium ions
associated with neural firing [5]. Typical TPM raster-scans the neural
tissue with a diffraction-limited illumination pattern (point-spread
function; PSF), resulting in an image representing the illumination
at a given time-step along a single 2-D plane of the tissue. To more
completely image activity in neural areas in order to better understand
the neural processing underlying behavior, neurons outside the plane,
in an entire volume, need to be imaged.

Algorithm 1 The SCISM algorithm
1: Set λ1, λ2, λsp, and K or s0

2: Set m = 1
3: Initialize R = Y
4: repeat
5: vl =

∑
t Tλ1

(
ãTl rt

)2
6: k = arg maxl vl

7: âk = 1
N

∑
tM (rt)

Tλ2 (rTt ãk)

‖M(rt)‖2

8: X̂ = arg minX

[
‖Y − ÂX‖2F + λsp

∑
k ‖xk‖1

]
9: R = Y − ÂX̂

10: m = m+ 1
11: until mink ‖xk‖22 ≤ s0 OR m >= K

12: Output Â, X̂

Current methods for volumetric TPM either raster-scan an entire
volume, resulting in reduced temporal frame-rates, or extend the
PSF in the axial direction (depth) to project entire volumes onto
a single image, losing depth information [6], [7]. To preserve depth
information, we modify the TPM optics to form two long beams
angled in to form a “V”-shaped illumination pattern. Raster-scanning
with this illumination pattern creates a 2-D stereoscopic projection of
the full volume of neural activity with no loss of temporal resolution
(Fig. 1a,b). Once the stereoscopic projections are obtained, isolating
pairs of active neural somas allows for the determination of each
neuron’s 3-D location and activity pattern.

The projection of the somas look approximately like pairs of
annuli, and the stereoscopic projection increases the distance between
the images linearly with the neuron’s depth. If the somas were
precisely pairs of annuli, then a dictionary of such shapes could be
constructed into a matrixA, and each frame in the TPM movie yt can
be decomposed using any number of sparsity-based estimators [8],
[9]. In this decomposition, each element of xt at time t represents the
activity of one neuron at a 3D location. Real somas, however, deviate
from this ideal shape. We therefore implement SCISM to adapt the
idealized shapes to the actual neural shapes.

To test this method, which we term Volumetric Two-photon Imag-
ing of Neurons Using Stereoscopy (vTwINS) [10], we implemented
the optical setup and collected data from awake mice situated in
a virtual reality (VR) setup. We imaged the mice both in visual
cortex V1 and hippocampus area CA1, and the resulting movies
were captured neurons at multiple depths. To use SCISM, we set the
idealized dictionary Ã to images of pairs of annuli at each location,
separated by different distances (a total dictionary size of number
of pixels × number of depths). SCISM then iteratively found active
neurons, and adapted the located activity profiles to the true soma
shapes in the data using the new shape-matching step. The SCISM
algorithm was able to extract 3D neural locations and temporal
activity for neuron in the imaged tissues (Fig. 1c-f). Both the soma
shapes and temporal activity match expected statistics, indicating that
vTwINS and SCISM jointly extract volumetric neural activity.



Fig. 1. (a) Depiction of the raster-scan path (red zig-zag pattern) and resulting image of a neural volume using vTwINS. The “V”-shaped PSF (shown here
with minimum separation distance of ∆min) results in a measured image where the deeper blue neuron has two nearby images, and the shallower green
neuron has more separation between pairs. The separation is affine with depth. (b) Example of a standard TPM image of neural activity, a vTwINS image of
the same neural volume, and a subsection depicting neurons at different depths captured with the stereoscopic projection. (c) SCISM run on 25000 frames of
data collected from mouse CA1 results in 882 found neurons across the range of depths. Note that the shallow blue in the middle of the field-of-view (FOV)
and the deeper orange at the edges captures the curvature of CA1. (d) 3D depiction of neurons found in the subsection of the FOV from (c) shows that neurons
at many depths were found. (e) The time traces for the corresponding neural activities represent the expected sparse firing patterns expected, indicating that
the activity SCISM captured was actual neural activity. (f) Example pairs of soma images (from the subsection volume in (d))and corresponding time-traces.
The deviation in neural shapes from the stereotypical pairs of annuli indicate that SCISM is successful in adapting the idealized shapes to the data.
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