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Abstract—We consider the problem of estimating the underlying
graph associated with an Ising model given a number of independent
and identically distributed samples. We adopt an approximate recovery
criterion that allows for a number of missed edges or incorrectly-included
edges, in contrast with the widely-studied exact recovery problem. Our
main results provide information-theoretic lower bounds on the sample
complexity for graphs having constraints on the number of edges and
maximal degree. We identify a range of scenarios where, either up to
constant factors or logarithmic factors, our lower bounds match the best
known lower bounds for the exact recovery criterion, several of which
are known to be tight or near-tight. Hence, in these cases, approximate
recovery has a similar difficulty to exact recovery in the minimax sense.

I. PROBLEM STATEMENT

The problem of graphical model selection consists of recovering
the graph structure associated with a Markov random field given a
number of independent samples from the underlying distribution.

Ising model: The ferromagnetic Ising model [2] is specified by
a graph G = (V,E) with vertex set V = {1, . . . , p} and edge set
E. Each vertex is associated with a binary random variable Xi ∈
{−1, 1}, and the corresponding joint distribution is

PG(x) =
1

Z
exp

(∑
i,j

λxixj

)
, (1)

where Z is a normalizing constant called the partition function. Here
λ > 0 is a parameter to the distribution, sometimes referred to the
inverse temperature.

Let X ∈ {0, 1}n×p be a matrix of n independent samples from
this distribution, each row corresponding to one such sample of the
p variables. Given X, an estimator or decoder constructs an estimate
Ĝ of the graph G, or equivalently, an estimate Ê of the edge set E.

Approximate recovery: The exact recovery problem has been
considered in a variety of previous works such as [3]–[8]. In contrast,
we consider the following approximate recovery criterion, for some
maximum number of errors qmax ≥ 0:

Pe(qmax) := max
G∈G

P
[
|E∆Ê| > qmax

]
, (2)

where E∆Ê = (E\Ê) ∪ (Ê\E), so that |E∆Ê| denotes the edit
distance, i.e., the number of edge insertions and deletions required
to transform one graph to another.

Graph class: We consider the class of graphs Gk,d, consisting of
graphs with at most k edges and maximal degree at most d.

II. MAIN RESULTS

We provide algorithm-independent lower bounds on the number
of samples required for the approximate recovery of graphs in Gk,d,
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split into two theorems for convenience. Here and subsequently, H2

denotes the binary entropy function in nats.

Theorem 1. (Class Gk,d with k ≤ p/4) For any maximal degree
d > 2 and number of edges k such that k = ω(d2) and k ≤ p/4,
and any distortion level qmax = bθkc for some θ ∈

(
0, 1

4
d−2
d

)
, it is

necessary that

n ≥ max

{
eλ(d−2)/4

(
log 2−H2

(
d
d−2
· 2θ
))

3λd2
,

2(1− θ) log p

λ tanhλ

}(
1− δ − o(1)

)
(3)

in order to have Pe(qmax) ≤ δ for all G ∈ Gk,d.

The first term in (3) reveals that the sample complexity is expo-
nential in λd. On the other hand, if λ = O

(
1
d

)
then the second term

gives a sample complexity of Ω(d2 log p).

Theorem 2. (Class Gk,d with k = Ω(p)) For any maximal degree
d > 2 and number of edges k such that k = ω(d2) and k ≤ 1

2
p(d′−

1) for some d′ ≤ d, and any distortion level qmax = bθkc for some
θ ∈

(
0, 1

4
d−2
d

)
, it is necessary that

n ≥ max

{
eλ(d−2)/4

(
log 2−H2

(
d
d−2
· 2θ
))

3λd2
,

log 2−H2(θ)

λ e
2λ cosh(2λd′)−1

e2λ cosh(2λd′)+1

}(
1− δ − o(1)

)
(4)

in order to have Pe(qmax) ≤ δ for all G ∈ Gk,d.

By the first term, the sample complexity remains exponential in
λd, and standard asymptotic expansions [1] reveal that the second
term yields a sample complexity of n = Ω

(
min

{
d2, d

3p2

k2

})
.

III. COMPARISONS TO EXACT RECOVERY

We make the following comparisons to the information-theoretic
lower bounds on exact recovery from [3], [4]:
• In all of the known cases where exact recovery is known to be

difficult in the sense of being exponential in λd→∞, the same
difficulty is observed for approximate recovery

• In many of the cases where the necessary conditions for exact
recovery lack exponential terms, the corresponding necessary
conditions for approximate recovery are the same up to either
constant or logarithmic factors; in particular, this is true under
the scaling of Theorem 1, as well as Theorem 2 with k � p

√
d.

• In contrast, more significant gaps remain in other cases, includ-
ing Theorem 2 with p

√
d� k � pd.

Further details on these comparisons can be found in [1], along
with analyses of other graph ensembles.
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