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I. INTRODUCTION

Compressed sensing was introduced as an effective method to
reconstruct sparse or nearly sparse signals from an underdetermined
system of linear equations. In many applications, however, we can
assume a second structural constraint besides sparsity, namely that
the nonzero entries of x come from a finite or discrete alphabet A.
Those signals appear, for example, in error correcting codes [3] as
well as massive Multiple-Input Multiple-Output (MIMO) channel [5]
and wideband spectrum sensing [2]. A particular example is given by
wireless communications, where the transmitted signals are sequences
of bits, i.e., with entries in A = {0, 1}. However, there also exist
several examples of applications, where the transmitted data originate
from a finite set A ⊂ R such as in source decoding or radar.

We will focus on the recovery of signals with entries from a
bounded lattice using basis pursuit. As it can be proven that post-
projecting the solution of basis pursuit does not help to improve
performance guarantees [4], we will consider the following adaptation
of basis pursuit to recover a signal x with entries in a finite alphabetA

min ‖x‖1 subject to Ax = b and x ∈ convAN . (PA)

We will show that basis pursuit with box constraint can provide
highly improved nonuniform recovery guarantees for finite-valued
sparse signals. Moreover, it can be shown to be stable under noisy
measurements with precise error bounds. Our analysis surprisingly
shows that the nonnegative case is very different from the bipolar
one. One of our findings is that the positioning of the zero - i.e.,
whether it is a boundary element or not - is crucial

II. BIPOLAR FINITE VALUED SIGNALS

We will first analyze recovery guarantees for bipolar finite-valued
signals having entries in a general finite alphabet of the form
A = {−L1, . . . , L2} ⊂ Z, with L1, L2 ∈ N. The straightforward
adaptation of basis pursuit to bipolar finite-valued signals is given by

min ‖x‖1 subject to Ax = b and x ∈ [−L1, L2]
N . (PF )

The following variant of the NSP characterizes the solvability of
this program and gives an equivalent condition. We will denote Kj =
{i : xi = j}, j = −L1, . . . , L2, and K = ∪L2

i=−L1
Ki \K0.

Definition II.1. Let K−L1 ⊂ K− ⊂ [N ] and KL2 ⊂ K+ ⊂ [N ]
with K−∩K+ = ∅. Further let K = K−∪K+. A matrix A ∈ Rm×N
is said to satisfy the finite NSP with respect to K−L1 , KL2 , K− and
K+, if

ker(A) ∩NK−,K+ ∩HKL2
,K−L1

= {0}, (F-NSP)

where

NK−,K+ = {w ∈ RN : −
∑
i∈K+

wi +
∑
i∈K−

wi ≥ ‖wKC‖1},

HKL2
,K−L1

={w ∈ RN :wi ≤ 0, i ∈ KL2 , and wi ≥ 0, i ∈ K−L1}.

We can utilize this characterization to deduce a sufficient number
of measurements for (PF ) to succeed in the case where A ∈ Rm×N
is a Gaussian matrix, by computing the statistical dimension of NK∩
HKL2

,K−L1
and results that stem from [1]. Figure 1 illustrates the

phase transition which is determined by the following result.

Theorem II.2. Let ε > 0, A ∈ Rm×N a Gaussian, b = Ax0 and x0
a bipolar finite-valued signal. Further set K̂ = K \ (K−L1 ∪KL2),
k̂ = |K̂| and ki = |Ki|, for i ∈ {−L1, 0, L2}. (PF ) will succeed to
recover x uniquely with probability larger than 1− ε if

m ≥ inf
τ≥0

{
k̂(1 + τ2) + k−L1

∫ ∞
−τ

(u− τ)2φ(u)du

+kL2

∫ τ

−∞
(u− τ)2φ(u)du+ k0

∫ ∞
τ

(u− τ)2φ(u)du
}

+
√

8 log(4/ε)N.

Note, that signals with entries in A = {−1, 0, 1}, which appear
often in applications, are a particular instance of bipolar finite-valued
signals. For them it holds that K̂ = ∅. Thus, the phase transition for
such signals corresponds to the lowest curve (P±ter) in Figure 1.

III. UNIPOLAR FINITE-VALUED SIGNALS

In many applications such as wireless communications or sensor
networks we are dealing with even more structured alphabets, namely
non-negative alphabets A = {0, . . . , L}, L ∈ Z, and in particular
with unipolar binary A = {0, 1} alphabets. The recovery situation
for such signals is quite different from the bipolar one due to the
positioning of the zero. We will show that the success of basis pursuit
with box constraints for signals with entries in a nonnegative alphabet
is equivalent to a weaker NSP condition which subsequently shows
that less number of measurements are sufficient. An illustration of
the phase transition can be seen in Figure 2. This results contains
in particular the case that x is unipolar binary, which was first
studied by Stojnic [6]. The phase transition for unipolar binary signals
satisfies the lowest curve (Pbin) in Figure 2, which illustrates that,
independently of the number of non-zeros, dN/2e measurements are
with high probability sufficient to recover a binary signal.

IV. OUTLOOK

Besides introducing equivalent conditions to recover finite-valued
sparse signals using basis pursuit with box constraints and computing
phase transitions, we will show robustness of the algorithm and we
will discuss the importance of the right choice of the exact bounds
in the additional constraint. Moreover, we will give some numerical
experiments that validate our theoretical results.
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Fig. 1: Phase transition of the convex program (PF ) according to
the ratio of k̂ to k, where k is the size of the whole support of a
bipolar finite-valued signal and k̂ the number of entries in the signal
not equal to zero, to the smallest or to the largest value of the given
alphabet. Recovery is likely above the curves.
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Fig. 2: Phase transition of basis pursuit with box constraints of the
from [0, L] according to the ratio of k̂ to k, where k is the size of
the entire support of a unipolar finite-valued signal and k̂ the number
of entries in the signal not equal to zero or to the largest value of
the given alphabet. Successful recovery related to the area above the
curves.
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