
Convex optimisation for partial volume estimation in
compressive quantitative MRI

Roberto Duarte∗, Zhouye Chen∗, Silvia Gazzola†, Ian Marshall‡, Mike Davies§, Yves Wiaux∗
∗ Institute of Signals, Sensors and Systems, Heriot-Watt University, EH14 4AS, UK

† Department of Mathematical Sciences, University of Bath, BA2 7AY, UK
‡ Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, EH16 4SB, UK
§ Institute for Digital Communications (IDCom), The University of Edinburgh, EH9 3JL, UK

Abstract—Based on the recently proposed compressive sensing frame-
work for quantitative MRI, a new approach for partial volume re-
construction is developed in this abstract. We first formulate a convex
optimisation problem for the recovery of a sparse matrix of coefficients
in a dictionary of measured temporal fingerprints associated with specific
combinations of quantitative parameters of interest. Each column of the
sought matrix represents a voxel in the volume under investigation and
the sparsity of this column represents the number of active dictionary
elements or partial volumes. In a second step, we employ the weighted
k-means algorithm to cluster the recovered coefficient matrix in parame-
ter space and obtain the quantitative parameter maps. The proposed
approach was validated through simulations, and its performance is
competitive when compared to a state of the art algorithm.

I. INTRODUCTION

Quantitative Magnetic Resonance Imaging (qMRI), aiming to pro-
duce voxel-wise quantitative maps of parameters related to the tissues
under investigation such as T1 and T2 relaxation times, remains
challenging due to its prohibitively long acquisition time. Inspired
by the recent growth of Compressed Sensing (CS) techniques in
MRI, Magnetic Resonance Fingerprinting (MRF) was introduced to
accelerate qMRI [1]. A full CS strategy was then formulated in [2]
including an iterative projection algorithm that imposes consistency
with the Bloch equations, namely BLoch response recovery via
Iterative Projection (BLIP). It has been shown that BLIP outperforms
the MRF technique proposed in [1] especially with a shorter magne-
tization sequence.

Nevertheless, both algorithms work with the assumption that there
is only one tissue in each voxel. As a result, voxels that contain
signal from multiple tissues may be incorrectly assigned. In order to
address this partial volume problem, a new approach based on the
CS framework in [2] is proposed.

II. PROPOSED METHOD

We first reformulate the acquisition model in [2] as Y = A(X)+η,
where Y ∈ CL×M represents the measurements, A : Rd×N

+ →
CL×M is a linear operator, X ∈ Rd×N

+ stands for the proton density
coefficient matrix, and η ∈ CL×M is Gaussian noise with standard
deviation σn. We should note that the magnetization sequence is
defined as X̄ = ΦX ∈ CL×N , where Φ ∈ CL×d is a dictionary
with d atoms and L acquisition instances. The operator A is defined
row-wise as Yl = ΦlXFP

(l), for l = 1, ..., L, where Φl is the l-th
row of Φ, F ∈ CN×N is the two dimensional Fourier transform, and
P (l) ∈ RN×M (with M � N ) are the random echo-planar imaging
(EPI) undersampling masks for different acquisitions. Since each
voxel is expected to contain only a few dictionary atoms (tissues), X
is naturally sparse. We thus reformulate the reconstruction problem
as a convex minimization task:

min
X∈Rd×N

+

||X||1 subject to ||Y −A(X)||2 ≤ ε, (1)

where ε is related to ||η||2. This kind of convex problem can be effi-
ciently solved by various kinds of algorithms. We hereby employ the
Forward-Backward Primal-Dual method to find the optimal solution
[3]. The method is implemented in the same way as in [4], which
allows to divide the data in multiple blocks to exploit parallelism.

Since the non-zero values are not limited in each column of X ,
(1) allows us to reconstruct the quantitative parameter maps with
multiple tissues voxels. In a second step, we put each column of X
in the parameter space and use the weighted k-means algorithm [5] in
order to constrain the maximum number of tissues in a single voxel.
The quantitative map can then be obtained according to the centroid
of each cluster. We should note that the continuity of these centroids
in fact allows us to achieve a better resolution than the dictionary
used in the minimisation.

III. EXPERIMENT AND RESULTS

In order to test the proposed method, a phantom with multiple
tissues in each voxel (2 tissues at most in this experiment) was
defined. The phantom was created by increasing the size of the voxel
in the original phantom in [6] by a factor of 4. For each voxel, the
two tissues with biggest proton density were chosen. The input noise
was set to 50dB, L = 200 and 1/16 of the data was acquired.
The dictionary used for the proposed method was composed of 676
atoms, while 22500 atoms were used for BLIP. As seen in Fig. 1-
2 and Table I, the proposed method is capable of partial volume
reconstructions and performs significantly better than BLIP, which
assumes that each voxel contains only one tissue. An important
remark is that the proposed method can achieve good results even
with a small dictionary by using the coherence of the dictionary
in the reconstruction. We should also mention that BLIP is less
computationally expensive than the proposed method, but has a higher
demand for a fine dictionary.

IV. CONCLUSION

In this abstract a new approach for partial volume reconstruction in
qMRI was proposed based on the CS framework in [2]. The two key
points of this approach are a problem re-formulation that considers
multiple tissue voxels, and a post-processing clustering. Simulation
results have shown the ability of the proposed method to reconstruct
quantitative maps with multiple tissue voxels. Our future work will
mainly focus on further simulations/experiments on real data and
computational optimization of the proposed algorithm.
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Fig. 1: First Element results (First row T1, second row T2 and third row ρ).
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Fig. 2: Second Element results (First row T1, second row T2 and third row ρ).

First Element SNR Second Element SNR
X̄ SNR T1 T2 ρ T1 T2 ρ

BLIP 22.31 13.24 8.96 15.54 N/A N/A N/A
`1 48.74 23.31 32.28 15.07 9.46 13.05 2.84

TABLE I: Results
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