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Abstract—It is becoming increasingly difficult to ignore the remarkable
results of Convolutional Neural Networks (CNN), and the need for its
theoretical analysis. In this work, we aim to alleviate this gap by proposing
a novel model – the multi-layer convolutional sparse coding (ML-CSC).
This defines a set of signals for which the forward pass of CNN is nothing
but a thresholding pursuit. Leveraging this connection, we are able to
attribute to the CNN architecture theoretical claims such as uniqueness
of the representations (feature maps) throughout the network and their
stable estimation, all guaranteed under simple local sparsity conditions.
Sitting on these theoretical grounds, we propose a better pursuit that is
shown to be theoretically superior to the forward pass.

I. INTRODUCTION

Deep learning [1], and in particular CNN [2]–[4], has gained a
copious amount of attention in recent years as it has led to many
state-of-the-art results spanning through many fields. In the core of
CNN is the ubiquitous forward pass algorithm, which is a multi-layer
scheme that provides an end-to-end mapping, from an input signal
to some desired output. Each layer consists of two steps: The first
convolves the input X with a set of learned filters, and the second
applies a point wise non-linear function, e.g. ReLU, on the resulting
response maps summed with a bias. The output of this layer is then
fed into another one, thus forming the multi-layer structure. For two
layers, this can be summarized in the following equation

ReLU
(

WT
2 ReLU

(
WT

1 X + b1

)
+ b2

)
, (1)

where Wi is the matrix containing the different filters shifted spatially
in all locations, and bi are the corresponding biases.

A seemingly unrelated paradigm, that has also led to remarkable
results, is the sparse representation concept [5]–[9]. When handling
natural signals, this model has been commonly used for modeling local
patches extracted from the global data mainly due to the computational
difficulties related to the task of learning the dictionary [5], [6], [9]–[11].
However, in recent years an alternative to this patch-based processing
has emerged in the form of the convolutional sparse coding (CSC) model
[12]–[16]. Indeed, the convolutional extension was extensively analyzed
in a recent work [17], [18], shedding light on its theoretical aspects and
prospects of success. Interestingly, while the CSC is a global model,
its analysis relied on local properties such as (i) the ‖ · ‖S0,∞ norm,
which is defined as the maximal number of non-zeros in a local patch
representation extracted from a global sparse vector, and (ii) the ‖ · ‖P2,∞
norm that measures the maximal `2 norm of a patch extracted from a
global signal.

II. FROM ATOMS TO MOLECULES:
MULTI-LAYER CONVOLUTIONAL SPARSE MODEL

Convolutional sparsity assumes an inherent structure for natural sig-
nals. Similarly, the representations themselves could also be assumed to
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have such a structure. In what follows, we propose a novel layered model
that relies on this rationale.

Definition 1: For a global signal X, a set of convolutional dictionaries
{Di}Ki=1, and a vector λ, define the deep coding problem DCPλ as:

(DCPλ) : find {Γi}Ki=1 s.t. X = D1Γ1, ‖Γ1‖S0,∞ ≤ λ1

Γ1 = D2Γ2, ‖Γ2‖S0,∞ ≤ λ2

...
...

ΓK−1 = DKΓK , ‖ΓK‖S0,∞ ≤ λK ,

where the scalar λi is the i-th entry of λ.
Intuitively, given a signal X, this problem seeks for a set of representa-
tions, {Γi}Ki=1, such that each one is locally sparse.

Assume we are given a signal X and our goal is to find its underlying
representations, {Γi}Ki=1. Tackling this problem by recovering all the
vectors at once might be computationally and conceptually challenging;
therefore, we propose the layered thresholding algorithm that gradually
computes the sparse vectors one at a time across the different layers.
Denoting by S+

β (·) the soft nonnegative thresholding operator with a
threshold β; we commence by computing Γ̂1 = S+

β1
(DT

1 X), which is an
approximation of Γ1. Next, by applying another thresholding algorithm,
however this time on Γ̂1, an approximation of Γ2 is obtained, Γ̂2 =

S+
β2

(DT
2 Γ̂1). This process is iterated until the last representation Γ̂K is

acquired.
Assuming two layers for simplicity, the layer thresholding algorithm

can be summarized as follows

Γ̂2 = S+
β2

(
DT

2 S
+
β1

(
DT

1 X
) )

.

Comparing the above with Equation (1), we conclude that the aforemen-
tioned pursuit and the forward pass of the CNN are equal! Building on
this observation, we present in this work a line of theorems providing
theoretical insights for CNN in the view of sparsity. Next, we present
one of these.

Theorem 2: (Stability of the layered soft thresholding): Suppose a
clean signal X has a decomposition

X = D1Γ1, Γ1 = D2Γ2, · · · , ΓK−1 = DKΓK ,

and that it is contaminated with noise E to create the signal Y = X+E.
Denote by µ(Di) the mutual coherence of the convolutional dictionary
Di, and by |Γmin

i | and |Γmax
i | the lowest and highest entries in absolute

value in the vector Γi, respectively. Let {Γ̂i}Ki=1 be the set of solutions
obtained by running the layered soft thresholding algorithm with thresh-
olds {βi}Ki=1, i.e. Γ̂i = Sβi (DT

i Γ̂i−1) where Γ̂0 = Y. Assuming that
∀ 1 ≤ i ≤ K

a) ‖Γi‖S0,∞ < 1
2

(
1 + 1

µ(Di)

|Γmin
i |
|Γmax

i |

)
− 1
µ(Di)

εi−1

|Γmax
i |

; and
b) The threshold βi is proportional to εi (defined below),

then
1) The support of the solution Γ̂i is equal to that of Γi; and
2) ‖Γi − Γ̂i‖P2,∞ ≤ εi,

where εi =
√
‖Γi‖P0,∞

(
εi−1 +µ(Di)

(
‖Γi‖S0,∞ − 1

)
|Γmax
i |+ βi

)
for

i > 0, and ε0 = ‖E‖P2,∞.
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