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Abstract—In this work we are interested in the asymptotic behaviour of
the trajectory of solutions of a differential equation, driven by a discrete
scheme, which corresponds to a particular inertial Forward-Backward
(i-FB) algorithm considered in [2]. The interest of studying this ODE is its
connexion with the fast minimization of a convex differentiable function
F . More precisely, under some appropriate hypothesis, the convergence
rates of the values of the functional F to its minimum and the norm
of the velocity of the trajectory-solution are the same order to the ones
obtained in [2] of their "discretized versions".

I. INTRODUCTION

LetH be a separable Hilbert space endowed with the scalar product
〈, 〉 and the norm ‖ · ‖. Let t0 ≥ 1 be a real number. We consider the
function F = f + g, where F is coercive, f, g : H → R are lower
semi-continuous convex functions and f is of class C 1(H) with ∇f
L-Lipschitz. We denote by x∗ a minimizer of F .

We split the paper into two parts. We first consider a classical ODE
setting and then we consider the differential inclusion case.

A. The differential equation case

In this first setting we assume that F ∈ C 1(H) (that is g ∈
C 1(H)) We propose to study the behaviour of trajectories of solutions
of the following differential equation :

ẍ(t) +

(
d

t
+

ad

td

)
ẋ(t) +∇F (x(t)) = 0 (E)

where d ∈ (0, 1] and a > 0.
The motivation for the study of this differential equation comes

from the fact that it models a specific inertial Forward-Backward
algorithm which was introduced in [2]. In other words a discretization
of (E) corresponds to this algorithm. We will show that under the
hypothesis that (E) admits a solution in [t0 +∞) with some initial
conditions (x(t0), ẋ(t0))) and under some supplementary hypothesis
on the constant a > 0 as in [2], we can derive uniform bounds for
t2dW (t) = t2d(F (x(t))− F (x∗)) and t2d‖ẋ(t)‖2.

The analysis is similar to the one carried out in [1] and it is based
on a Lyapunov energy function associated to (E) which was first
considered in [8] and in [1], where the case d = 1 is treated (which
corresponds to an ODE modeling the FISTA algorithm considered
in [7], [4], [6], [1] and [9]). As a by-product the results allow us to
deduce the weak convergence property of the trajectory x(t) towards
a minimizer x∗ as already shown in [5].

Theorem I.1. Let x : [t0,∞) −→ H be a solution of (E). There
exist some positive constants C1 and C2, such that the following
bounds hold for all t ∈ (t0,+∞) :

• If ad ≥ 2d then :

F (x(t))− F (x∗) ≤ C1

t2d
and ‖ẋ(t)‖2 ≤ C2

t2d
(1)

• If ad > 2d then :∫ +∞

t0

td(F (x(t))− F (x∗))dt < +∞ (2)

and
∫ +∞

t0

td‖ẋ(t)‖2dt < +∞ (3)

B. The differential inclusion case

In a second time we turn our interest onto the following differential
inclusion :

ẍ(t) +

(
d

t
+

ad

td

)
ẋ(t) + ∂F (x(t)) 3 0 (DI)

where d ∈ (0, 1], a > 0. This framework corresponds in a more
"direct" way to the i-FB algorithm studied in [2], since we do not
make the supplementary hypothesis of F ∈ C 1(H) (or g ∈ C 1(H)).
In addition we suppose that H is of finite dimension. Apart of
existence and uniqueness of a solution of (DI) in [t0,+∞) issues,
it turns out that the uniform bounds of the first point of Theorem
I.1, still hold true, given that a classical solution to (DI) exists. In
particular we have :

Theorem I.2. Let x : [t0,+∞) −→ H be a (classical) solution of
(DI). If a ≥ (2d)

1
d , then there exist some positive constants C1 and

C2, such that the following bounds hold for all t ∈ (t0,+∞) :

W (t) ≤ C1

t2d
and ‖ẋ(t)‖2 ≤ C2

t2d
(4)

FUTURE DIRECTIONS

As a future objectif, we aim at extending this study to a perturbed
version of (E) :

ẍ(t) +

(
d

t
+

ad

td

)
ẋ(t) +∇F (x(t)) + p(t) = 0 (EP)

which is similar to the one in [3]. The interest is to derive the same
uniform bounds in (t0,+∞), as in Theorem I.1 and to show that
we can have a better trade-off between the different convergence
rates and the impact of different perturbation levels for d ∈ (0, 1] (it
formally amounts to considering

∫ +∞
t0

td‖p(t)‖dt < +∞ for d ∈
(0, 1]).
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