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Abstract—In this work we are interested in the asymptotic behaviour of
the trajectory of solutions of a differential equation, driven by a discrete
scheme, which corresponds to a particular inertial Forward-Backward
(i-FB) algorithm considered in [2]. The interest of studying this ODE is its
connexion with the fast minimization of a convex differentiable function
F'. More precisely, under some appropriate hypothesis, the convergence
rates of the values of the functional F' to its minimum and the norm
of the velocity of the trajectory-solution are the same order to the ones
obtained in [2] of their "discretized versions''.

I. INTRODUCTION

Let H be a separable Hilbert space endowed with the scalar product
(,) and the norm || - ||. Let to > 1 be a real number. We consider the
function F' = f + g, where F' is coercive, f,g : H — R are lower
semi-continuous convex functions and f is of class €' () with V f
L-Lipschitz. We denote by ™ a minimizer of F.

We split the paper into two parts. We first consider a classical ODE
setting and then we consider the differential inclusion case.

A. The differential equation case

In this first setting we assume that F' € %'(H) (that is g €
€ (H)) We propose to study the behaviour of trajectories of solutions
of the following differential equation :

. d  a'\.
Z(t) + (; + ﬁ)z(t) + VFE(z(t) =0 (E)
where d € (0,1] and a > 0.

The motivation for the study of this differential equation comes
from the fact that it models a specific inertial Forward-Backward
algorithm which was introduced in [2]. In other words a discretization
of (E) corresponds to this algorithm. We will show that under the
hypothesis that (E) admits a solution in [ty + co) with some initial
conditions (z(to), Z(t0))) and under some supplementary hypothesis
on the constant ¢ > 0 as in [2], we can derive uniform bounds for
W (L) = 24(F(x(1)) — F(a")) and t2]l(0)]*.

The analysis is similar to the one carried out in [1] and it is based
on a Lyapunov energy function associated to (E) which was first
considered in [8] and in [[1]], where the case d = 1 is treated (which
corresponds to an ODE modeling the FISTA algorithm considered
in [[7], (4], [6], [1] and [9]). As a by-product the results allow us to
deduce the weak convergence property of the trajectory z(t) towards
a minimizer =™ as already shown in [3].

Theorem L1. Let x : [to,00) — H be a solution of (E). There
exist some positive constants C1 and Cy, such that the following
bounds hold for all t € (to,+00) :

o If a® > 2d then :

. C
and |#(0)|* < 55 ()
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o If a® > 2d then :

+oo
/ t1(F(z(t)) — F(z*))dt < 00 2)
to
+oo
and / t )| (t)||*dt < 400 3)
to

B. The differential inclusion case

In a second time we turn our interest onto the following differential
inclusion :

d a?

(L) + <f + t—d>¢(t) +OF(2(t)) 30 I

t

where d € (0,1], @ > 0. This framework corresponds in a more
"direct" way to the i-FB algorithm studied in [2], since we do not
make the supplementary hypothesis of F' € € (H) (or g € €' (H)).
In addition we suppose that H is of finite dimension. Apart of
existence and uniqueness of a solution of (DI) in [to, +00) issues,
it turns out that the uniform bounds of the first point of Theorem
[L.1] still hold true, given that a classical solution to (DI) exists. In
particular we have :

Theorem L.2. Let x : [to, +00) — H be a (classical) solution of
1

(D). If a > (2d)4, then there exist some positive constants C1 and

Cs, such that the following bounds hold for all t € (to, +00) :

eI < 52 @

and <

Ch
W) <
FUTURE DIRECTIONS

As a future objectif, we aim at extending this study to a perturbed
version of (E) :

.. d a*\.

Z(t) + T + 7] z(t) + VF(z(t)) + p(t) =0 (EP)
which is similar to the one in [3]. The interest is to derive the same
uniform bounds in (fo, +00), as in Theorem [L.1] and to show that
we can have a better trade-off between the different convergence
rates and the impact of different perturbation levels for d € (0, 1] (it
formally amounts to considering || tJOroo t*|lp(t)||dt < +oo for d €

(0, 1]).
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