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Abstract—We adopt data structure in the form of cover trees and
iteratively apply approximate nearest neighbour searches for fast com-
pressed sensing reconstruction of signals living on discrete manifolds. We
study the convergence of our algorithm within a more general class of
inexact gradient projection methods designated to solve constrained least-
square problems. We show that the projection cost is mainly determined
by the intrinsic dimension of the manifold and grows sub-linearly with
its population. We apply our results to quantitative MRI compressed
sensing and in particular within the Magnetic Resonance Fingerprinting
framework. For a similar reconstruction accuracy, we report 2-3 orders of
magnitude reduction in computations compared to the standard iterative
method using brute-force searches.

I. INTRODUCTION

Compressed sensing (CS) algorithms adopt efficient signal models
to achieve accurate reconstruction given small number of mea-
surements. First order methods in the form of iterative gradient
projection are popular for CS recovery i.e. solving the following
inverse problem:

x∗ = argminx∈M ||y −Ax||
2
2, (1)

where y ≈ Ax0 denotes the CS measurements related to the true
signal x0 by a linear forward operator A, and the set M represents
the signal model. A proper model should be chosen carefully to effi-
ciently promote the low-dimensional structure of data meanwhile not
bringing huge computational burden at the projection step. A suitable
trade-off is often hard to achieve when dealing with practical datasets
with complex models. Thus for saving in the computations one may
alternatively consider an inexact iterative projection algorithm:

xt+1 = PεtM
(
xt − µA∗(Axt − y)

)
, (2)

where εt is the level of approximation for calculating the projection
step at iteration number t. In the next part we show that if εt decays
rapidly enough, one can achieve a linear convergence for (2) with a
recovery accuracy similar to that of using the exact projection.

II. ITERATIVE INEXACT PROJECTION

Assume A satisfies Bi-Lipschitz property with respect to M with
constants 0 < α 6 β such that ∀x1, x2 ∈M it holds

α||x1 − x2||2 6 ||A(x1 − x2)||2 6 β||x1 − x2||2 (3)

Theorem 1. Assume β < 1.5α and 2/3α−1 < µ 6 β−1, the
sequence generated by algorithm (2) obeys the following bound:

||xt − x0||2 6 ρt
(
||xinit − x0||2 +

2

µα

i=t∑
i=0

ρ−iεi

)
+

4(1− ρt)
α(1− ρ)

||e||2.

Where ρ = 2
(

1
µα
− 1
)

, and e = ||y −Ax0||.
Remark 1. We achieve a linear convergence (up to a tolerance level
determined by e) as long as εt geometrically decays to zero. For
εt = o(ρt) we get the same rate r = ρ as the one bounding the
convergence of iterative exact projection (see [1] Theorem.2). For
εt = Θ(ρt), we have r = ρ + δ for a small δ > 0. Finally for
εt = Θ(ρt) where ρ < ρ we have r = ρ.

III. COVER TREES FOR FAST PROJECTION

In this part we consider compressed sensing of signals living on a
compact discrete manifold M with low intrinsic dimension. The set
M may be a dense collection of samples from a continuous manifold
with a non trivial projection. With such formalism the projection step
reduces to searching the nearest atom, however (potentially) in a very
large dictionary. We address the computational shortcoming of this
step by preprocessingM and form a cover tree structure suitable for
fast approximate nearest neighbour (NN) searches [2]. Cover tree is
a levelled tree whose nodes at different scales form covering nets for
M at multiple resolutions (i.e., coarse-to-fine dyadic coverage levels).
This structure hierarchically partitions the metric space and enables
using branch-and-bound methods for fast NN search. Meanwhile the
tree construction is blind to the explicit structure of data, several key
growth properties such as the tree’s explicit depth and the number
of children per node are characterized by the intrinsic dimension
dim(M) of the manifold. In particular, we have [2, 3]:

Theorem 2. The approximate (1+e)-NN search on a cover tree takes
at most 2O(dim(M)) log ∆ + (1/e)O(dim(M)) computations in time,
where ∆ is the aspect ratio of M.
In practical datasets ∆ ≈ n := Card(M) and thus the approximate
search complexity grows sub-linearly with manifold population (as
opposed to the brute-force search). We use cover tree’s (1+e)-NN
approximate search to efficiently implement the projection step of
algorithm (2). We link between the results of Theorems 1 and 2
and discuss that for a suitable constant e one can achieve enough
fast decay in the approximation level εt and thus, accurately solve
problem (1) with small computational effort. Note that forming the
cover tree takes O(n log(n)) computations and it may be computed
only once for a given application.

IV. APPLICATION IN MR FINGERPRINTING

Recently MR Fingerprinting [4] proposed a fast CS acquisition
scheme for quantifying the NMR properties (namely the T1, T2
relaxation times) of tissues. Small number of excitations in form
of rotating the magnetic field applies to the tissue, and between
each two excitations, the partial k-space information is measured.
An iterative exact projection algorithm (BLIP) is proposed for the
MRF problem which achieves a great parameter estimation accuracy
[5]. The projection consists of NN searches on a densely sampled
manifold M of fingerprints driven by the Bloch dynamic equations.

We investigate application of our proposed scheme for enhancing
the computational cost of the MRF reconstruction (as we know that
the fingerprints are driven from a low-dimensional manifold i.e., here
parametrized by two values T1, T2). We construct a cover tree on a
dictionary composed of n = 48682 fingerprints and apply the (1+e)-
NN tree search for different values of e (we refer to this algorithm
as BLIP-CT). We compare the performances of BLIP and BLIP-CT
on a synthetic brain phantom with six (T1, T2) segments. Figures
1-3 provides more details on this experiment. Results in Figure 3
indicates that BLIP-CT achieves a similar level of accuracy by saving
2-3 orders of magnitude in computations.



(a) Cover tree segments at scale 2 (b) Cover tree segments at scale 3 (c) Cover tree segments at scale 4 (d) Cover tree segments at scale 5

Fig. 1: The Bloch response manifold sampled from 48682 pairs of T1, T2 relaxation times ranging between 100-5000 (ms) and 20-1800
(ms), respectively. Samples M ∈ R1024 are magnetization responses of the corresponding parameters to a sequence of 1024 excitation
pulses, and are shown along the first three principal components. A cover tree is formed on M composed of 14 scales: (a-d) data partitions
are highlighted in different colours and demonstrated for scales 2-5. Low-scale partitions divide into finer segments by traversing down the
cover tree i.e. increasing the scale.

Fig. 2: Anatomical brain phantom. Segments correspond to Background, CSF, Grey Matter, White Matter, Muscle, Skin.

(a) Image reconstruction error vs. computation (b) T1 map accuracy vs. computation (c) T2 map accuracy vs. computation

Fig. 3: Computational cost vs. accuracy comparisons between BLIP and BLIP-CT, tested for brain phantom MRF reconstruction given 16
times subsampled k-space measurements. We only consider cost of the projection steps which is measured by the total number of tree nodes
to visit (complexity of the NN searches) per pixel until convergence. As we can observe, BLIP-CT with the choice of parameter e = 0.5
achieves an accurate parameter map with about 3 orders of magnitude less computations compared to BLIP.
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