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Abstract—When analyzing large and inhomogeneous data sets it is
of interest to obtain a robust estimate of an underlying signal. We
consider a large data set describing neuronal activity in which systematic
noise components are present. We propose the use of (soft) maximin
aggregation and L1-penalization to obtain a robust and sparse signal
from this noisy data. An approximative computational method and an
exact LARS-type method giving the entire solution path are presented.

I. INTRODUCTION

Let X and B be random vectors taking values in Rp and ε be a
zero-mean real random variable. Assume

Y = XtB + ε.

We think of X as a vector of predictor values and of B as a
vector of coefficients. If the distribution of B is degenerate, we have
a standard linear regression. In the general case, we could ask for a
single β ∈ Rp to capture some feature of the data. For this purpose,
define the maximin effects [1]

arg max
β∈Rp

min
b∈F

(Vβ,b), where Vβ,b = 2βtΣb− βtΣβ, (1)

Σ is the population Gram matrix of X , and F is the support of the
distribution of B. The maximin effects maximize minimal (over F )
explained variance, Vβ,b, when compared to the constant prediction.

Increasing F will only bring the maximin effects closer to the
origin which corresponds to the constant prediction. This robustness
feature is attractive when estimating F from noisy and inhomoge-
neous data sets as argued in [1].

We consider the case with observations Y1, . . . , Yn having known
groups, meaning that B is constant within each of G groups,

Yi = Xt
iBg(i) + εi

for a known labeling function g : {1, . . . , n} → {1, . . . , G}.

II. SOFT MAXIMIN EFFECTS

For x ∈ RG and ζ > 0 consider the soft maximum function

sζ(x) = ζ−1 log

(
G∑
g=1

exp(ζxg)

)
.

Define the L1-penalized soft maximin problem,

min
β∈Rp

sζ(−V̂β) + λ‖β‖1 (2)

where V̂β = (V̂ 1
β , . . . , V̂

G
β ) are empirical, group-specific explained

variances and λ is a non-negative tuning parameter. The soft maximin
problem can either be seen as an empirical approximation to (1), or
as a problem in its own right, noting that depending on ζ the problem
interpolates between mean aggregation and maximin aggregation, and
thus balances the properties of the two.

III. COMPUTATIONS

We solved (2) using a proximal gradient based algorithm that
iteratively applies a forward-backward type operator (essentially a
proximal operator) to an initial point in the solution space [2]. By
showing that sζ is strongly convex and C∞ it follows that (2) can
be solved using the non-monotone proximal algorithm from [2].
This algorithm extends the standard proximal gradient algorithm to
problems with a locally Lipschitz continuous loss, by finding fixed
points for the then locally firmly non-expansive forward-backward
operator. These fixed points constitute solutions to the problem (2).
Using warm starting, we solved (2) for a finite sequence of λs. The
algorithm is implemented in the R CRAN package SMMA [3] with
the further option of using a SCAD instead of an L1-penalty.

For our data example the design matrix is the same for all groups
and one can exploit this to obtain the complete (hard) maximin
solution path β(λ) which will be piecewise linear in Rp as a function
of λ [4], see Figure 4. This is analogous to the LARS algorithm in
the standard regression setting [5], [6]. This method was not applied
to the example data as it does not scale well with the size of the data.

IV. DATA EXAMPLE

Our example data was obtained using voltage-sensitive dye imaging
on the visual cortices of ferrets under a stimulus. The observations
are spatio-temporal measurements of light intensity (two spatial
dimensions and time) and stem from a total of 275 recordings of
13 ferrets. We treat the recordings as the known groups in (2).

Due to the delicate nature of the method many observations are
highly irregular (Figures 1 and 3), prompting the original authors
to discard some data [7]. The measurements suffer from both a low
signal-to-noise ratio and large, systematic noise components. Due to
the size of data, design-matrix free methods come in handy [8].

Neuroscientists expected to observe a temporally (and possibly
spatially) sparse signal after the stimulus. Using a L1-penalty, we
estimated the spatio-temporal domain in which the signal is non-zero,
exploiting the robust nature of the maximin effects.

V. CONCLUSION

Maximin aggregation combined with penalization offers an attrac-
tive way of obtaining a sparse signal or signal localization from
extremely noisy and inhomogeneous data. In our data example it
allows the analyst to obtain meaningful results using the entire data
set and localizes a spatio-temporally sparse signal (Figure 2).

The estimation of penalized maximin effects is a computational
challenge but is feasible for a sequence of penalty parameter values
using e.g. a proximal gradient algorithm. Considering the soft maxi-
min problem allows the analyst to strike a balance between (hard)
maximin aggregation and mean aggregation.
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Fig. 1. Snapshots of a single recording (raw data). The recording exhibits systematic noise components.
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Fig. 2. Snapshots of the fitted maximin effects showing a temporally sparse signal after stimulus onset, despite the irregularity of some recordings (see above).
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Fig. 3. Measurements from a single recording device during several recor-
dings. Top: 20 randomly selected tracks as they evolve over time. Middle:
smoothed version of the 20 tracks above. Bottom: prediction by the maximin
effects estimated from the full data set. Note the different scales of the y-axes
due to the implicit shrinkage of the estimator. The maximin effects localize
a temporally sparse signal.
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Fig. 4. Simple example of a solution path in R2. The three black line segments
indicate the sets of points in which the loss is not differentiable. The square
is the unpenalized (hard) maximin effects and the dashed line is the solution
path. For large enough values of λ the solution is the zero vector.
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