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Abstract—In this paper, we propose an efficient ADMM-based al-
gorithm for graph regularized sparse coding that explicitly takes into
account the local manifold structure of the data. Specifically, the graph
Laplacian representing the manifold structure is used as a regularizer, en-
couraging the resulting sparse codes to vary smoothly along the geodesics
of the data manifold. By preserving locality, the obtained representations
have more discriminating power compared with traditional sparse coding
algorithms and thus can better facilitate machine learning tasks such as
classification and clustering. The experimental results demonstrate the
effectiveness of our proposed algorithm over other previously suggested
approaches, in terms of both lower representation errors and faster, more
stable runtimes.

I. INTRODUCTION

Sparse coding has become a popular paradigm for data repre-
sentation and has been effective in practical computer vision tasks
such as image denoising [1], inpainting [2], classification [3] and
object recognition [4]. Due to the redundancy of the representative
dictionary, small variations in the data may result in very distinct
representations. To overcome this limitation, several sparse coding
methods have been proposed that enforce structural sparsity patterns,
for example by adding spatial consistency constraints [5] or a group-
sparsity regularizer [6]. Another approach, motivated by the recent
progress in spectral graph theory and manifold learning, is graph reg-
ularized sparse coding, which explicitly exploits the local geometrical
structure of the data. The underlying assumption is that in many real
applications, the data is likely to reside on or near a low-dimensional
manifold embedded in the high-dimensional ambient space. Encoding
the manifold structure by a graph, its Laplacian matrix L can be
incorporated into the sparse coding framework as a regularizer. The
added regularization limits the degree of freedom in the sparse coding
task and favors solutions preserving the local geometry, i.e. varying
smoothly along the geodesics of the data manifold.

II. MANIFOLD REGULARIZED SPARSE CODING

The graph regularized sparse coding problem is formulated as:

argmin
X
‖Y −DX‖2F + γTr(XLXT ) + β

∑
i

‖xi‖1 (1)

where Y is the data matrix, X is the corresponding sparse repre-
sentations matrix, D is an overcomplete dictionary with normalized
columns (atoms) and L is the Laplacian matrix of the data manifold.

Due to the imposed graph constraint, the problem is no longer
separable, and the sparse representations of different signals are
now dependent on each other, demanding joint sparse coding of the
ensemble signals (i.e. obtaining all columns of X together).

Several works have recently studied this problem. Zheng et al. [7]
proposed to solve Equation (1) using a coordinate descent approach
and subgradient methods. Other previously proposed methods are
based on the feature sign search algorithm [8] or a modified sequential
quadratic programming [9].

We propose a different solution based on the Alternating Direction
Method of Multipliers (ADMM) [10], which enables simultaneous

update of all columns of X . In this approach, the sparsity constraint
is separated from the rest and Equation (1) is reformulated as

argmin
X
‖Y −DX‖2F + γTr(XLXT ) + β

∑
i

‖zi‖1

s.t. X = Z.

(2)

The augmented Lagrangian is then given by

Lρ(X,Z,U) = f(X) + g(Z) + ρ‖X − Z + U‖22, (3)

where f(X) = ‖Y −DX‖2F + γTr(XLXT ), g(Z) = β
∑
i ‖zi‖1,

and U is the scaled dual form variable. The ADMM iterative solution
consists of sequential optimizations of Lρ over each of the variables
X ,Z, and U . The sub-problem of updating X is now quadratic, and
by derivation reduces to a Sylvester equation [11]:

(DTD + ρI)X + γXL = DTY + ρ(Z − U). (4)

Since the eigenvalues of (DTD + ρI) and (−γL) are distinct, a
unique solution X is guaranteed [12]. A numerical solution can
be efficiently obtained using the Bartels-Stewart algorithm [13],
[14], based on a Schur decomposition and backward substitution.
Alternatively, for large dimensions, an iterative gradient descent
approach may be applied.

The sub-problem of updating Z reduces to a shrinkage problem,
requiring applying soft thresholding to X + U . We denote this
operator by P β

2ρ
.

The graph regularized sparse coding algorithm is summarized in
Algorithm 1. To speed the convergence, X is initialized with the
standard sparse coding. We note that in [15] we have proposed a
similar algorithm using an `0 sparsity constraint. For the `0 setting,
the soft-thresholding here performed for updating Z is replaced with
a hard-thresholding operation, with a threshold selected such that only
the T largest entries in each column of X + U are kept.

III. EXPERIMENTAL RESULTS

To show the advantage of the proposed algorithm, we have
performed simulations on a synthetic example. Our ADMM pursuit is
compared with the graph regularized sparse coding method by Zheng
et al. [7] in representing noisy signals over a known dictionary.

The results presented in Figure 1 clearly demonstrate that the
ADMM approach, while being simple and efficient, is advantageous
in the achieved representation errors for all the evaluated sparsity
levels. In terms of runtime, the two methods are comparable when
a very small number of atoms is used, and the ADMM approach
is otherwise faster and displays more stable runtimes. This stems
from the fact that in our approach the entire matrix X is obtained
simultaneously, as opposed to the coordinate descent approach that
requires more iterations to converge as the cardinality increases.

Integrating the proposed ADMM pursuit in a dictionary learning
framework and evaluating it on real applications, in unsupervised as
well as supervised settings, further demonstrates the efficiency of this
method.



Algorithm 1 ADMM Pursuit for Manifold Regularized Sparse
Coding

Initialize:

X(0) = argmin
X
‖Y −DX‖2F + β

∑
i

‖xi‖1

Z(0) = X(0) , U (0) = 0.

Iterate: for k = 1, 2, ...

• Update X(k) as the solution of

(DTD + ρI)X + γXL = DTY + ρ
(
Z(k−1) − U (k−1)

)
• Update Z(k) = P β

2ρ

(
X(k) + U (k−1)

)
• Update U (k) = U (k−1) +X(k) − Z(k)

Output: The desired result is Z(k).
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Fig. 1: Evaluation results for two graph regularized pursuit methods:
the proposed ADMM solution and the graph regularized sparse
coding (graphSC) of [7], in terms of (a) representation error, (b)
runtime. For clarity, the evaluated values of β were translated to
direct cardinality levels of the representations.
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