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Abstract—We propose a primal-dual homotopy method for `1-
minimization problems with infinity norm constraints, where the natural
homotopy parameter is the value of the bound for the constraints.
Motivated by primal-dual optimality conditions, each iteration of our
method decomposes into two relatively small linear programs. The
effectiveness and the competitiveness of our method are demonstrated
in numerical experiments.

I. PROBLEM AND OPTIMALITY CONDITIONS

We consider the problem

min
x∈Rn

‖x‖1 s.t. ‖Ax− b‖∞ ≤ δ, (Pδ)

with A ∈ Rm×n, b ∈ Rm and δ ≥ 0. It is well-known that x∗ is
an optimal solution of (Pδ) if and only if there exists a y∗ such that

−A>y∗ ∈ ∂‖x∗‖1 and Ax∗ − b ∈ δ∂‖y∗‖1 (1)

hold. Each such y∗ is by construction an optimal solution to the dual
problem of (Pδ). Therefore, we sometimes refer to x∗ as a primal
solution, to y∗ as a dual solution and to (x∗,y∗) as an optimal pair.
For a thorough understanding of the conditions (1), it is helpful to
define the primal support S := {j : x∗j 6= 0}, the primal active set
W := {i : |a>i x∗ − bi| = δ}, the dual support Ω := {i : y∗i 6= 0}
and the dual active set Σ := {j : |A>j y∗| = 1}. Since ∂‖x∗‖1 =
{w ∈ [−1, 1]n : wS = sign(x∗S)}, we can partition (1) as follows:

−A>S y∗ = sign(x∗S) AΩx∗ − bΩ = δ sign(y∗Ω)

−1 ≤ −A>Scy∗ ≤ 1 −δ1 ≤ AΩc

x∗ − bΩc ≤ δ1
0 = x∗Σc 0 = y∗Wc

(2)
Although (Pδ) is motivated by various applications, such as sparse

dequantization [1], sparse linear discriminant analysis [2] and sparse
precision matrix estimation [3], our subsequent numerical experi-
ments focus on the Dantzig selector problem [4] which has itself
numerous applications in statistical estimation. In the following, we
describe our method which we call `1-HOUDINI (`1-norm HOmotopy
UnDer Infinity-Norm constraInts).

II. HOMOTOPY METHOD

Suppose that δk > δ and that (xk,yk) is an optimal pair for (Pδk ).
Hence, the conditions (2) hold for xk, yk and δk. As a first step in
each iteration, we construct yk+1 6= yk such that (xk,yk+1) is still
an optimal pair for (Pδk ). To that end, we fix xk and δk in (2) and
use the resulting conditions as constraints to reduce the dimension of
the search space in the following linear program

min
yW∈R|W |

− sign(AWxk − bW )>yW

s.t. −(AW
S )>yW = sign(xkS)

−1 ≤ −(AW
Sc)>yW ≤ 1

− sign(AWxk − bW )�yW ≤ 0.

(3)

We define yk+1
W as a solution of (3) and set yk+1

Wc := 0. In a second
step, we construct xk+1 6= xk and t > 0 such that (xk+1,yk+1)

is an optimal pair for (Pδk−t). This time, we fix yk+1 in (2) which
gives rise to the linear program

max
(xΣ,t)∈R|Σ|×R

t

s.t. AΩ
ΣxΣ − bΩ = (δk − t) sign(yk+1

Ω )

−(δk − t)1 ≤ AΩc

Σ xΣ − bΩc ≤ (δk − t)1
(A>Σyk+1)�xΣ ≤ 0

t ≤ δk − δ.
(4)

Finally, we define xk+1
Σ as a solution of (4), set xk+1

Σc := 0 and
δk+1 := δk − t. Note that the sets S, W , Ω and Σ now refer to the
respective primal and dual iterates and need to be updated in parallel
to those.

After at most (3m+n + 1)/2 iterations we reach δk+1 = δ and
xk+1 is an optimal solution of (Pδ), while each intermediate iterate
xk is an optimal solution of the related problem (Pδk ). The choice of
the objective functions in (3) and (4) is motivated by a theorem of the
alternative and plays a key role in view of convergence, see [5] for a
thorough convergence analysis and a proof of the following theorem.

Theorem 1: Starting at x0 := 0 and δ0 := ‖b‖∞, `1-HOUDINI

terminates after a finite number of iterations and returns an optimal
solution of (Pδ).

The fact that an arbitrary LP solver can be used to tackle (3) and
(4) can be considered an advantage of our method as it makes it
adaptable and easy to implement. Nevertheless, one can exploit the
structure of (3) and (4) in order to design efficient methods. In [5],
we propose an active set method that covers two essential aspects.
First, the previous iterates yk and xk are feasible starting points in
the subproblems to determine yk+1 and xk+1, respectively. Second,
Lagrange multipliers certifying optimality of yk+1 in (3) qualify as
an initial search direction at xk in (4), and vice versa.

III. NUMERICAL EXPERIMENTS

The Dantzig selector problem is a special case of (Pδ), where
the constraint is replaced by ‖A>(Ax− b)‖∞ ≤ δ. A specific
homotopy scheme for this problem, called Primal Dual pursuit
(PDP), was proposed in [6]. We compare our method to PDP and
to the commercial LP solver GUROBI, where we apply the latter to
the LP reformulation of (Pδ). Our test set includes random instances
according to [4] and instances from [7]. Table II provides an overview.

The first part of the comparison in Table I shows that the runtimes
of `1-HOUDINI and PDP often lie in the same magnitude while the
respective runtimes of GUROBI are significantly larger. We can further
observe that `1-HOUDINI is fastest in case m > n which is of interest
in many machine learning applications, where the number of training
examples is much larger than the number of features. Applied to
the empirical data from [7], GUROBI is the fastest algorithm in the
majority of cases, while PDP fails to find an optimal solution in three
out of seven cases. Table I finally shows that `1-HOUDINI is the only
algorithm that works with high accuracy on the whole test set.
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Fig. 1. Examplary run of `1-HOUDINI (using active set) with A ∈ R6×12 and b ∈ R6 randomly generated and δ = 0. The algorithm needed 9 iterations
to solve the problem. Horizontal labels display the value of the homotopy parameter δk after each iteration. The plots represent the solution paths of xkj for
j = 1, . . . , 12. The optimal solution has 6 nonzero entries.

inst. runtime in seconds ‖x∗‖1 constraint violation

`1-HOU. PDP GUR. `1-HOU. PDP GUR. `1-HOU. PDP GUR.
1 0.19 0.14 2.22 97.09 97.09 97.09 3 · 10−15 4 · 10−15 3 · 10−15

2 1.02 0.64 2.36 154.93 154.93 154.93 3 · 10−15 7 · 10−15 4 · 10−15

3 0.34 0.27 8.93 96.41 96.41 96.41 3 · 10−15 3 · 10−15 4 · 10−15

4 2.74 1.48 9.19 188.03 188.03 188.03 4 · 10−15 1 · 10−14 6 · 10−15

5 0.21 0.26 2.26 98.68 98.68 98.68 3 · 10−15 5 · 10−15 2 · 10−15

6 0.47 0.52 2.35 152.03 152.03 152.03 5 · 10−15 1 · 10−14 5 · 10−15

7 0.44 0.41 9.11 95.73 95.73 95.73 5 · 10−15 6 · 10−15 5 · 10−15

8 0.84 0.86 9.22 186.19 186.19 186.19 5 · 10−15 1 · 10−14 5 · 10−15

9 0.03 0.02 < 0.01 44.64 44.64 9.36 3 · 10−10 3 · 10−4 2 · 10−2

10 0.03 0.02 < 0.01 304.27 304.27 6.03 1 · 10−8 4 · 10−3 2 · 10−1

11 0.02 0.01 < 0.01 316.35 316.35 316.35 7 · 10−8 1 · 10−4 1 · 10−7

12 0.04 0.02 < 0.01 64.18 64.18 64.18 3 · 10−9 6 · 10−7 7 · 10−10

13 0.02 - 0.03 0.79 - 2 · 105 7 · 10−7 - 4 · 10−9

14 0.21 3.47 0.52 0.67 1.88 634.89 7 · 10−7 1 · 10−7 1 · 10−11

15 176.76 5.52 1.11 998.72 157.41 998.72 8 · 10−7 4 · 104 4 · 10−7

TABLE I
RUNTIME AND ACCURACY COMPARISON.

inst. description m n δ |S|

1 random [4] 1024 1024 0.39 66
2 random [4] 1024 1024 0.51 152
3 random [4] 1024 2048 0.27 69
4 random [4] 1024 2048 0.39 166
5 random [4] 2048 1024 0.35 65
6 random [4] 2048 1024 0.55 128
7 random [4] 2048 2048 0.29 64
8 random [4] 2048 2048 0.39 130
9 Wine (red) [7] 1599 12 0.00 12
10 Wine (white) [7] 4898 12 0.00 12
11 Airfoil Self-Noise [7] 1503 6 0.00 6
12 Housing [7] 506 14 0.00 14
13 Online News Popularity [7] 39644 59 0.00 6
14 Blog Feedback [7] 52396 280 0.00 11
15 Relative location of CT 53500 385 0.00 385

sclices on axial axis [7]

TABLE II
TEST INSTANCES.
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