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Abstract—Measuring attenuation coefficients is a fundamental
problem that can be solved with diverse techniques such as X-ray
or optical tomography and lidar. We propose a novel technique
based on the observation of a sample from a few different angles.
In principle, it can be used in existing devices such as lidar
or various types of fluorescence microscopes. It is based on
the resolution of a nonlinear inverse problem. We propose a
specific computational approach to solve it and show the well-
foundedness of the approach on simulated data. Some of the tools
developed are of independent interest. In particular we propose
new robust solvers for the lidar equation and an adaptation of
the nonlocal-means to a specific type of heteroscedastic noise.
This can be used to correct attenuation defects in images.

I. INTRODUCTION

Assume that two measured signals u1 and u2 are formed
according to the following model:

u1(x) = β(x) exp

(
−
∫ x

0

α(t) dt

)
for x ∈ [0, 1] (1)

u2(x) = β(x) exp

(
−
∫ x

1

α(t) dt

)
for x ∈ [0, 1]. (2)

The function β : [0, 1]→ R+ will be referred to as a density,
while α : [0, 1]→ R+ will be called the attenuation map. The
signals u1 and u2 can be interpreted as measurements of the
same scene under opposite directions. The question tackled
here is: can we recover both α and β from the knowledge of
u1 and u2?

II. CONTRIBUTIONS

a) Applications: The first contribution of this work is to
highlight the fact that the above model can be found in many
applications ranging from fluorescence microscopy to lidar.
Depending on the applications, one may observe more than 2
views, and they may differ by arbitrary angles. To the best of
our knowledge, this fact was known in lidar only [1], [2], [3].

b) A Bayesian estimator: It is easy to show that α(x) =
1
2
∂
∂x

log
(
u2(x)
u1(x)

)
and β(x) = u1(x)

exp(−
∫ x
0
α(t) dt)

. Unfortunately,
these equations are extremely unstable to noise. Using a maxi-
mum a posteriori approach, under a Poisson noise assumption,
we construct estimators α̂ and β̂ of α and β defined as the

minimizers over Rn+ × Rn+ of

F (α, β) =

n∑
i=1

2∑
j=1

[exp(−(Ajα)[i])β[i]

+ uj [i]((Ajα)[i]− log(β[i]))] +Rα(α) +Rβ(β).

(3)

The terms Rα(α) and Rβ(β) correspond to regularizers that
may depend on the application.

c) A numerical algorithm: It is natural to set Rα(α)
and Rβ(β) as convex functionals to get some hope of finding
global minimizers. Function F is then convex in each variable
separately, but nonconvex on the product-space Rn+ × Rn+,
making it hard to find global minimizers.

An important observation of this work is that if Rβ = 0
for all β, then the minimizer of F (α, β) satisfies β =

u1+u2

exp(−A1α)+exp(−A2α)
. Replacing this expression, we obtain

a new problem depending on α only which is convex for any
convex regularizer Rα:

(4)

min
α ∈Rn

n∑
i =1

2∑
j =1

uj [i]

(Ajα)[i]
+ log

 2∑
j=1

exp(−(Ajα)[i])

+Rα(α).

This seemingly innocuous problem actually causes many trou-
bles, due to the presence of the logsumexp function and to
non common linear integral operators. We develop an efficient
numerical strategy to minimize it. This provides a vector α0

that can be used as a warm start initialization for an alternating
algorithm to minimize F (α, β). An example of result on a 2D
image is shown in Figure (1).

d) Nonlocal means for heteroscedastic noise: The min-
imization with respect to β of F (α, β) corresponds to the
problem of restoring a signal attenuated and suffering from
Poisson noise. This can be seen equivalently as a problem of
denoising with an heteroscedastic (and non orthodox) noise
statistics. We develop a statistically sound approach, to extend
the NL-means to this setting. An example of result on a 2D
image is shown in Figure (2).



III. TYPICAL RESULTS

(a) Density α (b) Attenuation β

(c) Image u1 (d) Image u2

(e) Estimated density (f) Estimated attenuation

Fig. 1: Illustration of the contribution. A sample (here an
insect) has a fluorophore density α shown in Fig. 1a and an
attenuation map β shown in Fig.1b. The two measured images
u1 and u2 are displayed in Fig. 1c and 1d. As can be seen,
they are attenuated differently (top to bottom and bottom to
top) since the optical path is reversed. From these two images,
our algorithm provides a reliable estimate of each map in Fig.
1e and 1f despite Poisson noise.
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(c) Original density (d) Direct estimate
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