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Abstract—We study the problem of recovering a smooth graph signal
from incomplete noisy measurements, using random sampling to choose
from a subset of graph nodes. The signal recovery is formulated
as a convex optimization problem. We reformulate the optimization
problem in a way that the optimality conditions form a system of linear
equations which is solvable via Laplacian solvers. We use an incomplete
Cholesky factorization conjugate gradient (ICCG) method for graph
signal recovery. Numerical experiments validate the performance of the
recovery method over real-world blog-data of 2004 US election.

I. INTRODUCTION

We consider an undirected symmetric weighted graph G0 =
(V,E ,W) with a node set V, an edge set E and the weighted
adjacency matrix W ∈ RN×N . Each non-zero component Wi,j

represents the strength of the connection between signal values xi
and xj . For a given graph G0, a graph signal x is a labeling of the
graph nodes with real numbers. A graph signal can be represented
as a vector x ∈ RN by having a vector component xi to be the
graph-signal value at node i ∈ V .

Many applications of graph signal processing rely on smoothness:
a graph signal is smooth when neighboring nodes have similar signal
values. Smoothness can be calculated via the notion of the Laplacian
quadratic function [1]:
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Wi,j (xj − xi)2 = xT Lx, (1)

where ▽ix is the graph gradient of x at vertex i, with Ni ∶= { j ∈
V ∣ Wi,j ≠ 0 } the neighborhood of the node i ∈ V and L := D -
W the graph Laplacian matrix with diagonal degree matrix D that
has the diagonal elements Di,i = ∑j∈VWi,j .

II. PROBLEM FORMULATION AND RECOVERY SOLUTION

We deal with the problem of recovering a smooth graph signal
x = {xi, i = 1,2, ...,N} from a subset of noisy graph-signal samples.
The observation vector is given by y = Ax + n. In this work, the
noise vector n ∼ N(0, σ2) represents the effect of modeling and
measurement errors, and the sampling process is represented by the
measurement matrix A ∈ RM×N , which mostly consists of zeros, with
at most one non-zero entry in each column and exactly one non-zero
entry in each row. Our recovery method is based on balancing the
graph signal’s smoothness (cf. (1)) with the empirical error, which
yields the following convex optimization problem:
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∣∣Ax − y∣∣22 + αxT Lx. (2)

The tuning parameter α > 0 trades-off the two components. For
recovery of a noisy graph signal x, we need to solve the optimization
problem (2), whose optimal points x̂ are given by the linear equation
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The graph G0 with K connected components Cl, has a single unique
optimal point x̂ of the optimization problem (2) if and only if the

sampling set S ⊆ V contains at least one node rl, l = 1, ...,K, from
each connected component Cl of the graph G0.

In order to obtain the recovered signal x̂, we have to solve a system
of linear equations. An iterative method to solve large systems of
linear equations such as (3) is the incomplete Cholesky factorization
conjugate gradient (ICCG) method [2]. The CG algorithm requires
a preconditioner matrix M, which is usually an approximation of
C−1. To improve the convergence of CG, the ideal preconditioner
is the exact inverse of C, hence a suitable preconditioner can be an
approximation of the Cholesky factor. To find such a preconditioner
we first calculate the lower triangular matrix H using the exact
Cholesky decomposition algorithm; except here for each zero entry
in C, the corresponding entry in H should also be set to zero. This
gives an incomplete Cholesky factorization of matrix C, which is as
sparse as the matrix C. Matrix H is required to set M = HHT as
preconditioner of the CG. The preconditioner M attempts to improve
the spectral properties of the coefficient matrix C, so the matrix
M−1C will be better conditioned and CG converges faster [3].

III. NUMERICAL RESULTS AND CONCLUSION

In order to asses the accuracy of the iterative recovery algorithm,
we applied it to a real-world political blogs data-set [4]. This data-
set consists information about left-leaning and right-leaning political
blogs. Blogs are represented by the nodes of the graph and nodes
representing the same political party are connected by an edge. Each
blog is assigned a value, i.e., -1 for the right- and +1 for left-leaning
blogs. The graph of the raw data contained 266 isolated nodes.
We selected the largest connected subgraph G for our numerical
experiments. In this graph there are N = 1224 nodes (588 left-leaning
and 636 right-leaning blogs) and ∣E∣ = 16661 edges. Edge directions
were omitted to obtain an undirected graph. We randomly selected
M noise-contaminated signal samples xi and this way obtained the
measurement vector y. For sufficient statistical significance of the
results we ran the recovery method for 1000 times with α = 0.1
(and each time with different noise realizations), and set the stopping
criterion to a maximum of 100 iterations. The final result is averaged
over the outcomes of the individual runs of the recovery scheme.

We analyzed the effect of different noise levels σ2 and varying
sampling rates (SR) M/N on the normalized mean squared error
(NMSE), NMSE = ∥x−x̂∥2

∥x∥2 . The obtained results are shown in Table I:
ICCG shows very good recovery performance especially for sampling
rates (SR) M/N > 0.1.

Another metric considered besides the NMSE is the recovery ratio
(RR) defined as the fraction of nodes i ∈ V, for which the blogs’
political leanings are correctly detected. To compute this metric we
rounded the value of recovered signals to the nearest signal value
i.e., xi ∈ {−1,1}. The obtained results for recovery ratio are shown
in Table II: even for high noise variance σ2 and low sampling rates
M/N such as σ2 = 0.65 and M/N = 0.1, the algorithm can recover
correctly more than 80% of the binary graph signal values.



TABLE I: NMSE of the ICCG algorithm.

NMSE σ2 = 0 σ2 = 0.25 σ2 = 0.5 σ2 = 0.65
SR=0.1 0.6107 0.7092 0.7629 0.7971
SR=0.2 0.1920 0.2129 0.2395 0.2623
SR=0.3 0.1448 0.1642 0.1957 0.2200
SR=0.4 0.1217 0.1397 0.1765 0.2038
SR=0.5 0.1022 0.1195 0.1592 0.1925
SR=0.6 0.0839 0.1009 0.1449 0.1799
SR=0.7 0.0678 0.0848 0.1339 0.1720
SR=0.8 0.0519 0.0690 0.1226 0.1652
SR=0.9 0.0353 0.0548 0.1164 0.1640

TABLE II: Recovery ratio (percentage) of the ICCG algorithm.

Recovery ratio σ2 = 0 σ2 = 0.25 σ2 = 0.5 σ2 = 0.65
SR=0.1 84.7 82.3 80.9 80.1
SR=0.3 96.4 95.9 95.1 94.5
SR=0.5 97.5 96.8 96.0 95.1
SR=0.7 98.2 97.6 96.6 95.6
SR=0.9 99.1 98.6 97.0 95.9
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