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Regularization techniques are widely employed in the solution
of inverse problems in data analysis and scientific computing due
to their effectiveness in addressing difficulties due to ill-posedness.
Frequently, these methods take the form of penalty functions added
to the objective in optimization-based approaches for solving inverse
problems. The purpose of the penalty function is to induce a desired
structure in the solution, and these functions are specified based on
prior domain-specific expertise. In this work, we study the question
of learning suitable regularization functions from data in settings
in which precise domain knowledge is not directly available. The
regularizers obtained using our framework are specified as convex
functions that can be computed efficiently via semidefinite pro-
gramming, and therefore they can be employed in tractable convex
optimization approaches for solving inverse problems.

We begin by highlighting the geometric aspects of regularizers that
make them effective in promoting a desired structure. We focus on a
family of convex regularizers that are useful for inducing a general
form of sparsity in solutions to inverse problems. Concretely, suppose
A C R? is a (possibly infinite) collection of elementary building
blocks or atoms. Then y € R is said to have a sparse representation
using the atomic set A if y can be expressed as follows:

k
y = Zcmh a; € A,¢ >0,
i=1

for a relatively small number k. An important virtue of sparse
descriptions based on A is that employing the atomic norm induced
by A — the gauge function of the atomic set A — is effective
at promoting sparse descriptions in solutions with respect to .4 [2].
The reason is that the low-dimensional faces of the convex hull of A
contain points that have a sparse description using .A. Indeed, in many
contemporary data analysis applications the solutions of regularized
optimization problems with generic input data tend to lie on low-
dimensional faces of sublevel sets of the regularizer [3]-[5].

The difficulty with employing an atomic norm regularizer in prac-
tice is that one requires prior domain knowledge of the atomic set .A.
While such information may be available based on domain expertise
in some problems, identifying a suitable atomic set is challenging
for many contemporary datasets that are high-dimensional and are
presented to an analyst in an unstructured fashion. We study the
question of learning a suitable regularizer directly from observations
{y(j)}?zl C R%. Specifically, we want to obtain an atomic set
A such that each y@) has a sparse representation using .A; the
corresponding regularizer is simply the atomic norm induced by A.

A. Relating Dictionary Learning to Polyhedral Regularizers

The problem of learning a suitable polyhedral regularizer from
data points {y(j )}};1 corresponds to identifying an appropriate finite
atomic set to concisely describe each y). This problem is equivalent
to the question of ‘dictionary learning’ (also called ‘sparse coding’)
[6]. To see this connection, suppose that we parametrize a finite
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atomic set via a matrix L € R**? so that the columns of L and
their negations specify the atoms. The associated atomic norm ball
is the image under L of the ¢; ball in R”. With this parametrization,
learning a polyhedral regularizer may be viewed as obtaining a
matrix L such that each y¥) is well-approximated as Lx) for a
vector x9) € RP with few nonzero coordinates. Computing such
a representation of the data is precisely the objective in dictionary
learning.

B. From Polyhedral to Semidefinite Regularizers

The objective of this work is to investigate the problem of learning
more general non-polyhedral atomic norm regularizers; in other
words, the set of atoms may be infinite. On the approximation-
theoretic front, infinite atomic sets offer the possibility of concise
descriptions of data sets with much richer types of structure than
those using finite atomic sets. Formally, we consider atomic sets in
R? that are images of rank-one matrices:

AL) = {L(uv') [ u,v €RY, lufle, =1, ||v]le, =1},

where £ : R7*9 — R? specifies a linear map. The corresponding
atomic norm ball is given by:

conv (A(L)) = {L(X) | X e RT”, | X|, <1},

where || X ||« := )", 0:(X). As the nuclear norm ball has a tractable
semidefinite description [5], [7], the atomic norm induced by A(L)
can be computed efficiently using semidefinite programming. The
problem of learning a semidefinite-representable regularizer may be
phrased as one of matrix factorization whereby our objective is to
obtain a linear map £ such that each y) is well-approximated as
L(X ) for a low-rank X)) ¢ RI*9,

We develop an alternating update algorithm to compute such a
factorization. Our approach is a generalization of methods that are
widely employed in dictionary learning. With £ fixed, updating the
XU)s entails the solution of affine rank minimization problems.
Although this problem is intractable in general [8], tractable heuristics
have been developed and proven to succeed under suitable conditions
[51, [9], [10]. With the X s fixed, £ is updated by solving a least-
squares problem. To address non-uniqueness issues that arises in
our matrix factorization instance, we apply the Operator Sinkhorn
iterative procedure to put the map £ in a canonical form. Operator
Sinkhorn iteration was developed by Gurvits to solve certain quantum
matching problems [11], and can be viewed as an operator analog of
the diagonal congruence scaling technique for nonnegative matrices
developed by Sinkhorn [12]. Under suitable conditions on the input
data, our algorithm provides a locally linearly convergent method for
identifying the correct regularizer that promotes the type of structure
contained in the data. Our analysis is based on the stability prop-
erties of Operator Sinkhorn scaling and their relation to geometric
aspects of determinantal varieties. We demonstrate the utility of our
framework with a series of experimental results on synthetic as well
as real data.
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