Accelerating the Gradient Projection Iterative Sketch for large scale constrained Least-squares

Junqi Tang, Mohammad Golbabae, Mike Davies
Institutte of Digital Communications, The University of Edinburgh, EH9 3JE, UK

Abstract—This paper proposes an accelerated sketched gradient method [1] which was based on combining a combination of the meta-algorithms Classical Sketch (CS) [2] and Iterative Hessian Sketch (IHS) [3] with the Projected / Proximal Gradient Descent (PGD) algorithm and Nesterov’s acceleration scheme for efficiently solving large scale constrained Least-squares and regularized Least-squares. As a first order solver, the PGD can provide us flexibility in handling the constraints and scalability in computation. The proposed algorithm satisfies a number of our expectations as an efficient large scale constrained/regularized LS solver, which are mainly inherited from the scalability and flexibility of the PGD combined with dimensionality reducing properties of the sketching techniques: (a) computational efficiency, (b) efficiency on high speed storage, and (c) flexibly to incorporate a wide range of constraints and non-smooth regularization.

I. INTRODUCTION

Consider a noisy linear measurement model for a vector x_{gt} (ground truth) which belongs to a convex constrained set K, an n by d linear operator matrix A, and additive noise denoted by $w \in \mathbb{R}^{n \times 1}$:

$$y = Ax_{gt} + w, \quad x_{gt} \in K, \quad A \in \mathbb{R}^{n \times d}. \tag{1}$$

In the context of imaging applications such as CT or MRI, the vector y denotes a set of n physical measurements collected from an image x_{gt} through the measurement operator A, and in the context of machine learning, A is often a training data matrix used for setting the regression parameters x_{gt} from the observations y. The Least-square (LS) estimator for x_{gt} is:

$$x^* = \arg \min_x \|y - Ax\|_2^2 + f_K(x). \tag{2}$$

where the convex (could be non-smooth) function f_K enforces the constraint into the Least-squares estimator. If the constraint is exactly known, the f_K can be set as the indicator function of the set K, if not, we can set it as a regularizer.

II. SKETCHED GRADIENT WITH NESTEROV’S ACCELERATION SCHEME

A standard first order solver for (2) is the PGD algorithm which can be defined for any convex constrained set K, as long as the projection (or proximal operation) onto the set is efficient:

$$x_{j+1} = \text{Prox}_{f_K}(x_j - \eta A^T (Ax_j - y)). \tag{3}$$

The PGD is known to be flexible to various constraint sets, but it faces two major challenges: 1) when the operator A is large, the computational cost of the iterates can be large; 2) when A is ill-conditioned, the PGD may take a very large number of iterations to converge. Moreover when the computational cost of the projection/proximal operator is non-trivial, we also wish to reduce the number of iterations as much as possible (the stochastic gradient algorithms usually demands a small batch size which will lead to a large number of iterations). The proposed algorithm is aimed at tackling both reducing the cost of the gradient calculation and the number of iterations.

Algorithm 1:

Initialization: $p_0 = 1$ for all t, $z^0_0 = 0$, $z^0 = 0$;
Given $A \in \mathbb{R}^{n \times d}$, sketch size $m \ll n$;
Generate a random sketching matrix $S^0 \in \mathbb{R}^{m \times n}$;
Calculate $S^0 A$, $S^0 y$;
while $i = 0 : k_0 - 1$ do
$$x^0_{i+1} = \text{Prox}_{f_K}(z^0_i - \eta (S^0 A)x^0_i - S^0 y));$$
$$p_{i+1} = (\eta p_i)^2 + \sqrt{(\eta p_i)^4 + 4(\eta p_i)^2};$$
$$\tau_{i+1} = \frac{p_{i+1}}{(\eta p_i)^2 + p_{i+1}^2};$$
$$z^0_{i+1} = x^0_{i+1} + \tau_{i+1}(x^0_i - x^0_i);$$
end
$$x^0_{1} = z^0_{1} = x^0_{0};$$
while $t = 1 : N - 1$ do
Calculate $g = A^T (Ax^0_t - y)$;
Generate a random sketching matrix $S^t \in \mathbb{R}^{n \times m}$;
Calculate $A^t = S^t A$;
while $i = 0 : k_t - 1$ do
$$x^t_{i+1} = \text{Prox}_{f_K}(z^t_i - \eta (A^t x^t_i - x^0_i + mg));$$
$$p_{i+1} = (\eta p_i)^2 + \sqrt{(\eta p_i)^4 + 4(\eta p_i)^2};$$
$$\tau_{i+1} = \frac{p_{i+1}}{(\eta p_i)^2 + p_{i+1}^2};$$
$$z^t_{i+1} = x^t_{i+1} + \tau_{i+1}(x^t_i - x^t_i);$$
end
$$x^t_{1} = z^t_{1} = x^t_{0};$$
end
Return x^N_t ;

As shown in the Algorithm 1, we use the classical sketching [2] and iterative sketching [3] framework as we have done in the [1], and then since the sketched least-square problem is fixed in every outer loop, the Nesterov’s acceleration scheme [4][5] is in theory directly applicable to provide acceleration in both strict constrained setting and proximal setting.

We have also tested its performance through numerical experiments, and observe that the proposed algorithm achieves a further speed-up onto the GPS / GPS-prox algorithm in all the experiments.

ACKNOWLEDGMENT

Junqi Tang would like to acknowledge the support from H2020-MSCA-ITN Machine Sensing Training Network (MacSeNet), project 642685
Fig. 1. Experimental results on a synthetic l_1 constrained Least-square regression problem

Fig. 2. Experimental results on a fan-beam CT image reconstruction (Regularized least-squares)

REFERENCES

