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Abstract—This paper presents a computationally efficient greedy
archetypal analysis (GAA) algorithm. GAA leverages the underlying
sparseness property of AA, and thus is scalable to larger datasets while
giving significantly faster convergence as compared to the existing algo-
rithms. Since, extremal points have the sparsest convex representation,
archetypes are identified by projecting the data in a linearly trans-
formed/coefficient space involving sparse matrices. Here, appropriate
sparse exemplars are selected by employing an iterative fast subset
selection approach.

I. INTRODUCTION

Archetypal analysis (AA) is decomposition of data as convex
combinations of extremal points/archetypes dj , which lie on the
convex hull of the data and are themselves restricted to being a
convex combinations of individual observations xi [1] by solving
the following optimization problem with simplex constraints:

argmin
B,A

bj∈∆l,ai∈∆d

‖X−DA‖2F = ‖X−XBA‖2F =

l∑
i

‖xi −Dai‖22,

∆l , [b � 0,‖b‖1 = 1],∆d , [a � 0, ‖a‖1 = 1]
(1)

Here, the columns of D are the inferred archetypes. This problem
can be solved iteratively using quadratic programming (QP) in
an alternating minimization framework [2], [3], [1]. In contrast to
using only generic QP solvers or gradient descent based algorithms,
we leverage the underlying sparseness property of the solution, to
design a greedy algorithm having significantly faster convergence
and scalablity to larger datasets.

The proposed GAA algorithm is computationally efficient because
it employs coefficient space learning [4], [5], which involve solving
the following optimization problem only once

argmin
ci∈∆l

‖X−XBA‖2F = ‖X−XC‖2F =

‖vec(X)− (I⊗X)vec(C)‖22 s.t. diag(C) = 0,
(2)

Here, vec(.) denotes the vectorization operation, and matrix C can be
seen as the coefficient matrix representing each exemplar as a linear
combination of others [4]. The columns cis of the coefficient matrix
C are computed such that the error is bounded i.e., ‖X−XC‖2F <
η1, and the factor B is updated by solving the following problem for
a fixed A

argmin
B,bj∈∆l

‖C−BA‖2F , (3)

Hence, updating B is independent of any computations involving X.
Similarly, for a fixed B, A can be updated via a suitable fast QP
solver2. Further, note that all the involved matrices i.e C, B and A
are sparse or compressible, which helps in speeding up the algorithm.

1There exist a case where XC = XBA, but C 6= BA. This occurs when
C = BA + V, where V lies in the null space of X.

2GAA employ the active-set QP solver: http://spams-devel.gforge.inria.fr/

A. Finding Archetypes using Subset Selection

GAA identifies archetypes on convex hull by exploiting the intrin-
sic sparsity structure of convex representations. It is based on the
fact that extremal points have a sparser convex representation as
compared to interior points of the data distribution. The geometric
interpretation of our approach is depicted in Figure 1. Hence, B
is updated (in the coefficient domain) column wise by sequentially
extracting a new sparse column ek from the current error matrix
EΩ (Step 4 in Algorithm 1). Here, set Ω = |S(a[j])|, (S being the
soft-thresholding operator) leverages the underlying sparsity pattern
in row a[j] of A and favors the observations closer to edges, leading
to a better estimate of archetypes. Note that after each selection
coefficients aΩ

[j] are not re-estimated, as the goal is just to emphasize
the potential candidates for next atom update. The GAA algorithm
can also be extended to robust and relaxed AA model [1], [3].

II. EXPERIMENTAL RESULTS

This section compares the efficiency of the proposed GAA algo-
rithm along with existing algorithms i.e., AA using active-set (AAAS)
algorithm [2], AA using projected gradient (AAPG) algorithm [1],
AA with Kullback-Leibler divergence (AAKL) algorithm [6], in
various signal processing/machine learning applications3.
Experiment1: Fig. 2 and 3 shows the AA results on synthetic and
real dataset.
Experiment2: Table I shows a comparison of CPU run-times on
two real datasets4. In practice, it was observed that the empirical
complexity of GAA algorithm is linear in l and d, while for AAAS
algorithm it is only linear in l.

Experimental results confirms that GAA performs comparable to
existing methods with significant time complexity gain.

Algorithm 1 Greedy Archetypal Analysis (GAA) algorithm

Inputs: Training signal matrix X ∈ Rn×l

Outputs: D ∈ Rn×d, B ∈ Rl×d and A ∈ Rd×l

Initialization: η, iter, D, random B s.t. D = XB and C via (2).

Perform outer iterations
1: A← argmin

A,ai∈∆d

‖X−DA‖2F , E← C, I = ∅

Perform inner iterations: j = 1

2: Ω← |S(a[j])|, k ← argmax(Gini(ek)) k /∈ I, k ∈ Ω

3: bj ← ek,bj ← bj/‖bj‖2,EΩ ← EΩ − bja
Ω
[j]

4: I ← I ∪ k, j = j + 1
Until d columns

5: D← XB, iter ← iter − 1
Until iter > 0

3Comparison done on a Quad-Core Intel i7 machine at 3.5 GHz, 12 GB
RAM, using MATLAB and under Win10 operating system.

4http://statweb.stanford.edu/ tibs/ElemStatLearn/data.html
https://cs.brown.edu/ gen/sunattributes.html
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Fig. 1. Illustration of geometry in convex representation using a 2-simplex
and 7 points in a 2-D plane. Convex hull is marked by red boundary.
Points x4 and x5 can be represented as a convex combination of points
x1,x2 and x3, while point x6 as a convex combination of x2 and x3.
Point x7 can only be represented as an affine combination of other points.
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Fig. 2. Illustration of archetypal analysis for real-valued 1000 observa-
tions where model order ‘d’ in (a), (c), (d) is 3, and in (b) is 4. The
corners of each colored polygon indicate the estimated archetypes. Note
that the relaxed AA works best for the model order-3 dataset which has
no true archetypes.
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TABLE I
AVERAGE ARCHETYPAL ANALYSIS RUN-TIMES FOR FINDING 1000

ARCHETYPES VIA DIFFERENT METHODS OVER 10 TRIALS.

Dataset Number of
Observations

Run-time (s)
AAPG AAAS GAA

USPS 9298 1500 950 520
SUN Attribute 14340 2250 1400 820

Water activity: A1

Physical activity: A2

ocean/river/lake: A3

Enclosed area: A2

Buildings/houses: A5

Highways/roads: A6

Transport: A7

Open area (green): A8

Open area: A9

Abstract images: A10
(a)

A5 + A8 + A6

(b)

Fig. 3. Visualization of the archetypes found for the SUN attribute dataset.
(a) The top six generating images for each one of the ten archetypes (A1-
A10). (b) Example image with top three generating archetypes.


