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Abstract—Compressed Learning (CL) is a joint signal processing
and machine learning framework for inference from a signal, using
a small number of measurements. This paper presents an end-to-end
deep learning approach for CL, in which a network composed of fully-
connected layers followed by convolutional layers perform the linear
sensing and non-linear inference stages. During training, the sensing
matrix and the inference operator are jointly optimized, leading to a
significant advantage compared to existing methods. For example, at a
sensing rate of 1% (only 8 measurements of 28 x 28 pixels images), the
classification error for the MNIST handwritten digits dataset is 6.46%
compared to 41.06% with CL state-of-the-art.

Index Terms—compressed learning, deep learning.

I. INTRODUCTION

CL [1] is a mathematical framework that combines Compressed
Sensing (CS) [2], [3] with machine learning. CL has diverse appli-
cations including image classification [4], reconstruction-free action
recognition [5], [6], [7], acquisition of dynamic scenes [8], least-
squares regression [9], watermark detection [10], prediction of pro-
tein—protein interactions [11], targets classification [12], [13], and hy-
perspectral image analysis [14]. The theoretical study in [1] revealed
that direct inference from CS measurements is feasible with high
classification accuracies. In particular, this work provided analytical
results for training a linear Support Vector Machine (SVM) classifier
in the CS domain! y = ®x, and it was proved that under certain
conditions the performance of a linear SVM classifier operating in
the CS domain is almost equivalent to the performance of the best
linear threshold classifier operating in the signal domain. A different
approach, termed smashed filters, was presented in [12], in which a
generalized maximum-likelihood criterion was employed to design
matched filters for target detection in the measurements domain
of compressive cameras such as the single-pixel camera [15]. This
approach was extended and termed smashed correlation filters for
activity recognition by [5], and for face recognition by [6]. A deep
neural network (DNN) approach was introduced by [4], in which
random and Hadamard sensing matrices were employed for image
classification in the CS domain. This work utilized convolutional
networks that operate on the image domain, and used the following
projected measurement vector as the input to the network?:

z=dyeR". (1

By training a network similar to LeNet [16] for classifying MNIST
digits images, and using the projected measurement z rather than
the true image X, outstanding classification results were obtained by
[4], which significantly outperform the smashed filters approach at
sensing rates as low as R =0.01. This approach was also successfully
verified for the challenging task of classifying a subset of the Ima-
geNet dataset, consisting of 1.2 million images and 1,000 categories.

1o e RM*VN s the sensing matrix, X € RY is the signal, and R = M/N is
the sensing rate (M < N).
’Instead of the true image, and after reshaping it to v/N x v/N pixels.
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II. THE PROPOSED APPROACH

Our approach provides an end-to-end DNN solution to CL, in
which the sensing matrix @ is jointly optimized with the inference
operator. Our choice is motivated by the outstanding success of con-
volutional networks for the task of compressive image classification
[4], which employed a random sensing matrix (with Gaussian entries)
for classifying the MNIST [16] dataset, and a Hadamard matrix for
classifying a subset of the ImageNet dataset. In our approach, the
first layer learns and performs the sensing matrix @ stage, and the
subsequent layers perform the non-linear inference stage. Note that
the second fully-connected layer performs a similar operator to (1),
however, a different matrix ¥ € RV*M is learned. Once the network is
trained, the sensing stage (i.e. the first hidden layer) can be detached
from the subsequent inference layers, into two separate elements of
a CL system. The proposed DNN architecture includes the following
layers®: (1) an input layer with N nodes; (2) a CS fully-connected
layer with NR nodes, R < 1 (its weights form the sensing matrix); (4)
a fully-connected re-projection layer that expands the output of the
sensing layer to the original image dimensions N; (6) a convolution
layer with kernel sizes of 5 x5, and 6 feature maps; (8) maxpooling
layer which selects the maximum of 2 x 2 feature maps elements, with
a stride of 2 in each dimension; (9) a convolution layer with kernel
sizes of 5 x5, and 16 feature maps; (11) maxpooling layer which
selects the maximum of 2 x 2 feature maps elements, with a stride
of 2 in each dimension; (12) reshape operator that reshapes the 16
4 x 4 max-pooled features maps into a 256-dimensional vector; (13)
a fully connected layer of 256 to 120 nodes; (15) a fully connected
layer of 120 to 84 nodes; and (17) a SoftMax layer with 10 outputs.
We have trained* the proposed network from the training images of
the MNIST dataset, using the Stochastic Gradient Descent algorithm
with a learning rate of 0.0025 and 100 epochs. Classification error
performance was evaluated for sensing rates in the range of R = 0.01
to R = 0.25, and averaged over the 10,000 MNIST test images.
Classification error results are summarized in Table I, and reveal
a consistent advantage of the proposed approach, which increases
significantly for lower sensing rates.

III. CONCLUSIONS

This paper presents a novel deep learning approach to CL, in
which the sensing matrix and the non-linear inference operator are
jointly optimized. This approach is demonstrated to outperform state-
of-the-art CL, which employs a random sensing matrix followed by
a convolutional network, for the task of image classification. The
proposed approach can be extended to numerous CL applications,
such as detection and recognition of patterns in single- and multi-
channel images and signals.

3The 2" linear layer and convolutional layers are followed by ReLU [17].

4The network was implemented in Torch7 [18], and trained on NVIDIA
Titan X GPU card. A software package for reproducing the results is available
at: http://www.cs.technion.ac.il/~adleram/CL_DNN_2016.zip
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TABLE I: Classification Error (%) for the MNIST handwritten digits dataset vs. sensing rate R = M/N (averaged over 10,000 test images):

Sensing Rate  No. of Measurements ~ Smashed Filters [12]  Random Sensing + CNN [4]  Proposed
0.25 196 27.42% 1.63% 1.56%
0.1 78 43.55% 2.99% 1.91%
0.05 39 53.21% 5.18% 2.86%
0.01 8 63.03% 41.06% 6.46%
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