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Abstract—Current low-rank tensor literature lacks development in

large scale processing and generalization of the low-rank concepts to

graphs [8]. Motivated by the fact that the first few eigenvectors of the

knn-nearest neighbors graph provide a smooth basis for the data, we

propose a novel framework “Multilinear Low-Rank Tensors on Graphs

(MLRTG)”. The applications of our scalable method include approximate

and fast methods for tensor compression, robust PCA, tensor completion

and clustering. We specifically focus on Tensor Robust PCA on Graphs

in this work.

I. INTRODUCTION

For a tensor Y⇤ 2 Rn⇥n⇥n, let Lµ be the combinatorial Laplacian
of the knn-graphs constructed between the rows of the matricized
versions Yµ, 8µ = 1, 2, 3. Also let Lµ = Pµ⇤µP

>
µ be the eigenvalue

decomposition of Lµ, where the eigenvalues ⇤µ are sorted in the
increasing order. Then, Y⇤ is said to be Multilinear Low-Rank on
Graphs (MLRTG) if it can be encoded in terms of the lowest k
Laplacian eigenvectors Pµk 2 Rn⇥k, 8µ as:

vec(Y⇤
) = (P1k ⌦ P2k ⌦ P3k) vec(X ⇤

), (1)

where vec(·) denotes the vectorization, ⌦ denotes the kronecker
product and X ⇤ 2 Rk⇥k⇥k is the Graph Core Tensor (GCT). We
call the tuple (k, k, k), where k ⌧ n, as the Graph Multilinear Rank

of Y⇤ and refer to a tensor from the set of all possible MLRTG as
Y 2 MLT.

Throughout, we use Fast Approximate Nearest Neighbors library
(FLANN) [3] for the construction of Lµ which costs O(n log(n))
and is parallelizable. We also assume that a fast and parallelizable
framework, such as the one proposed in [9] is available for the
computation of Pµk which costs O(n k2

c ), where c is the number
of processors.

II. TENSOR ROBUST PCA ON GRAPHS (TRPCAG)

For any Y 2 MLT, the GCT X is the most useful entity. For
a clean matricized tensor Y1 it is straight-forward to determine the
matricized X as X1 = P>

1kY1P2,3k, where P2,3k = P1k ⌦ P2k 2
Rn2⇥k2

. For the case of noisy Y , corrupted by spasre noise, one seeks
a robust X which is not possible without an appropriate regularization
on X . Hence, we propose to solve the following convex minimization
problem:

min

X
kY1 � P1kX1P

>
2,3kk1 + �

X

µ

kXµk⇤g(⇤µk), (2)

where k · k⇤g(·) denotes the weighted nuclear norm and g(⇤µk) =

⇤

↵
µk,↵ � 1, denotes the kernelized Laplacian eigenvalues as the

weights for the nuclear norm minimization. Assuming the eigenvalues
are sorted in ascending order, this corresponds to a higher penaliza-
tion of higher singular values of Xµ which correspond to noise. Such
a nuclear norm minimization on the full tensor (without weights) has
appeared in earlier works [2]. This costs O(n4

). However, note that
in our case we lift the computational burden by minimizing only
the core tensor X . The above algorithm requires nuclear norm on
X 2 Rk⇥k⇥k and scales with O(nk2

+ k4
). This is a significant

complexity reduction over Tensor Robust PCA (TRPCA) [2]. We use
Parallel Proximal Splitting Algorithm to solve eq. (2) as explained
in Appendix of [4].

III. THEORETICAL ANALYSIS

Although the TRPCAG based inverse problem (eq. 2) is orders
of magnitude faster than the standard tensor robust PCA [2], it
introduces some approximation. Our detailed theoretical analysis is
presented in Theorem 2 of [4]. In simple words, the theorem states
that 1) the singular vectors and values of a matrix / tensor obtained by
our method are equivalent to those obtained by standard Multilinear
SVD, 2) in general, the inverse problem 2 is equivalent to solving
a graph regularized matrix / tensor factorization problem where the
factors Vµ belong to the span of the graph eigenvectors constructed
from the modes of the tensor. Furthermore, to recover an MLRTG one
should have large eigen gaps �µk⇤/�µk⇤+1. This occurs when the
rows of the matricized Y can be clustered into k⇤ clusters. However,
note that for most of the applications, the optimal k⇤ is not known.
In such cases it is suggested to select a k > k⇤. Then, the low-rank
tensor recovery error is characterized by the projection of factors V ⇤

µ

on (k� k⇤
) extra graph eigenvectors that are used. Our experiments

in [4] show that selecting a k > k⇤ always leads to a better recovery
when the exact value of k⇤ is not known.

IV. EXPERIMENTS

We compare the qualitative performance of the low-rank and sparse
decomposition of matrices and tensors obtained by various methods.
Fig. 1 presents experiments on the 2D real video datasets obtained
from airport and shopping mall lobbies (every frame vectorized and
stacked as the columns of a matrix). The goal is to separate the
static low-rank component from the sparse part (moving people) in
the videos. The results of TRPCAG are compared with RPCA [1],
RPCAG [5], FRPCAG [6] and CPCA [7] with a downsampling factor
of 5 along the frames. Clearly, TRPCAG recovers a low-rank which
is qualitatively equivalent to the other methods in a time which is
100 times less than RPCA and RPCAG and an order of magnitude
less as compared to FRPCAG. Furthermore, TRPCAG requires the
same time as sampling based CPCA method but recovers a better
quality low-rank structure. The performance quality of TRPCAG is
also evident from the point cloud experiments in Fig. 2 where we
recover the low-rank point clouds of dancing people and walking
dog after adding sparse noise to them.

To show the scalability of TRPCAG as compared to TRPCA,
we made a video of snowfall at the campus and tried to separate
the snow-fall from the low-rank background via both methods. For
this 1.5GB video of dimension 1920⇥ 1080⇥ 500, TRPCAG (with
core tensor size 100⇥ 100⇥ 50) took less than 3 minutes, whereas
TRPCA [2] did not converge even in 4 hours. The result obtained
via TRPCAG is visualized in Fig. 3. For more experiments and the
complete paper please refer to [4].
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Figure 1. Performance analysis of TRPCAG for the 2D real video datasets: airport and shopping mall lobies. The goal is to separate the sparse component
(moving people) from the static background. The rightmost frame in each row shows the result obtained via TRPCAG. The computation time for different
methods is written on the top of frames. Clearly TRPCAG performs quite well while significantly reducing the computation time.

noisyActual Low-rank via TRPCAG

Figure 2. TRPCAG performance for recovering the low-rank point clouds of
dancing people and a walking dog from the sparse noise. Actual point cloud
(left), noisy point cloud (middle), recovered via TRPCAG (right).

Low-rank frame via TRPCAGFrame of a 3D video Sparse frame via TRPCAG

Figure 3. Low-rank recovery for a 3D video of dimension 1920⇥1080⇥500
and size 1.5GB via TRPCAG. Using a core size of 100⇥100⇥50, TRPCAG
converged in less than 3 minutes.
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