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Abstract—We study the problem of verifying when two disjoint closed
convex sets remain separable after the application of a quantised random
embedding, as a means to ensure exact classification from the signatures
produced by this non-linear dimensionality reduction. An analysis of the
interplay between the embedding, its quantiser resolution and the sets’
separation is presented in the form of a convex problem; this is completed
by its numerical exploration in a special case, for which the phase transition
corresponding to exact classification is easily computed.

I. PROBLEM STATEMENT

Non-linear dimensionality reduction techniques play an important role
in simplifying statistical learning on very large-scale datasets. Among
such techniques, we focus on quantised random embeddings obtained by
a non-linear map A applied to & € K C R", that is

y=A(x) = Qs(Px + &) 1)

with & € R™*" a random sensing matrix, Qs(-) = 8| 3] a uniform
scalar quantiser of resolution 6 > 0 (applied component-wise), and the
signature y € SZ™. In (1), the dithering' &€ ~ U™ ([0,4]) is a well-
known means to stabilise the action of the quantiser [1], [2].

The non-linear map (1) is a non-adaptive dimensionality reduction that
yields compact signatures for storage and transmission, while retaining
a notion of quasi-isometry that enables the approximation of @ [2], [3].
Consequently, distance-based learning tasks preserve their accuracy if
run on A(K) rather than K, provided some requirements are met on
m, 0, the distribution of ® and the “dimension” of K as measured,
e.g., by its Gaussian mean width w(K) := sup,c |g' @| with g ~
N™(0,1) (see, e.g., [2]). In this context we aim to show that, given
two classes described by some sets C1,C2 C K : C1 N C2 = () and
x € CL UCy C K, classifying whether & belongs to C; or Ca is still
possible from y = A(x). For linear embeddings such as y = ®x,
Bandeira et al. [4] approach the above classification problem as follows.

Problem 1 (Rare Eclipse Problem (from [4])). Let C1,C2 C R" : C1 N
Co = 0 be closed convex sets, ® ~N™*"(0,1). Given n € (0,1), find
the smallest m so that po = P[®C1 N ®C2 = 0] > 1 —n.

Prob. 1 amounts to ensuring for all ' € C1, " € C» that their images
®x’ # Pz Using the difference set C~ :=C1—Co = {z=a' —z" :
' € C1,x" € C2} we see the above problem equals

PVzeC™,®z2#0,]=1-PE32ze€C : ®z=0,]>1—n.

This requires a bound on the probability that the kernel of ® “collides”
with C™, i.e., P[Ker(®)NC™ # 0] <1, and [4] shows that 7 is small if
m is large compared to the “dimension” of C~ as measured by w? :=
w? (R+C7)NS™ ") with R4 C™ the cone generated by C™.

From this standpoint, extending such existing results on Prob. 1 to
non-linear maps as (1) is non-trivial. Applying A to each closed convex
set C1,C2 would produce two countable sets A(C1),A(C2) C 6Z™, and
assessing if they still “collide” is our key question below.

Problem 2 (Quantised Eclipse Problem). In the setup of Prob. I,
given € (0,1), find the smallest m so that P[A(C1) N A(C2) = 0] >
1—mn, ie, ps :=PNVa’ € C1,z" € C2,A(x') ZA(z")]| >1—n.

Note that the event in Prob. 2 requires P[3 ' € C,x" € Co :
A(z') = A(z")] < n, i.e., a bound on the probability of existence of
two consistent vectors (through the mapping A) that do not belong to
the same set.
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We here leverage the quantised restricted isometry property (QRIP)
introduced in [2] to estimate 1 and the conditions on m. The QRIP
establishes some conditions on m that ensure = [|A(z’) — A(z")||1 >
(¢ —e)|lz|| — ede’ > (' —€)o — cée’ =: H for some controllable
distortions &, > 0, with 0 < ||z|| and some constants c,c’ > 0.
Thus A(z’) # A(z”) if H > 0. In particular, we deduce the following
proposition whose proof is postponed to an extended version of this work.

Proposition 1. In the setup of Prob. 2, let r; == rad(C;), i € {1,2},
r =11+ 12, and A defined in (1) with § > 0. Given n € (0,1), if

m 2 (wd +n3)(1+log(1 + 52) + wr?log 1), )
then ps > 1 — .

Numerically testable but stronger conditions ensuring ps > 1 — 1 in
Prob. 2 can be deduced as follows. We first note that if ®z = 0,,, for a
given ® and any z € C™, i.e.,, Ker(®)NC~ # (), then ps = 0 for all
§ > 0 since then ®x’ + & = ®x” + €. Second, since A(z’) = A(z”)
induces ||®z|lco < 6 for z := 2’ — x” € C, proving ps = P[Vz €
C,||®2|loc > 8] > 1 — n will solve Prob. 2 since ps > ps.

We define accordingly a consistency margin 7 = ||®2*|| s with
z* = argmin, x| ®2]|e s.t. 2 € CT :=C1 — Co, 3)
i.e., as a property of ® and C~ so that, if 7 > §, we necessarily have
A(z’) # A(z") for ', z” in different classes, ie., ps = Plr > 4.
Intuitively, z* is related to the minimal separation o between C; and Ca.

Note that (3) is clearly convex if IC and C~ are convex. We anticipate
that the construction of a certificate for this problem will provide a bound
on 7 > ¢ when C™ is known, and analyse an exemplary case afterwards.

II. NUMERICAL TEST FOR TWO DISJOINT £2-BALLS

We consider the simple, yet broadly applicable convex case of two balls
C1 = r1Bp, + c1 and Co = r2Bj5 + ca. Then, C~ = rBy, + ¢ with
c:=c1 —cy and r := r1 +ry (see Fig. 1). In this context ||| = o +r
and w—\/% < ﬁ < Z in Prop. 1 [4].

By solving random instances of this problem® w.r.t. & ~ A™*"(0, 1),
with n = 2% and m € [2', 28], we are able to compute the consistency
margin for each ® on C~, which is varied by fixing » = 2 and taking
o = |lc]| = r € [2°,2°]. Then, we collect Tiin, i.e., the smallest T
resulting from 27 trials for each configuration (Fig. 2a), and also estimate
on the same trials the probability ps = P[r > ¢ := 1] in Fig. 2b.

Fig. 2a reports several level curves of Tmin. For each curve, the event
A(C1)NA(C2) = 0 holds if § := Tmin. While this condition is necessary
but not sufficient, these level curves are compatible with the points
(%%, 0) that satisfy the rule m =~ j—zn (up to log factors) induced by
(2) in Prop. 1. Fig. 2b displays a sharp phase transition in the contours
of ps. Despite the fact that ps > ps, the contours are also approximately
aligned with the iso-probability curves that can be deduced from (2),
7'2;;62n R Clog(}]), with ps = 1 — n for some C,c > 1.

III. CONCLUSION AND OPEN QUESTIONS

The fundamental limits of learning tasks with embeddings are being
tackled in several studies [5]-[8]. Our contribution expands the require-
ments for exact classification from the signatures produced by two closed
convex sets after quantised random embeddings. We shall also specify
this analysis to low-complexity structured sets /C (e.g., selecting disjoint
“clusters” of sparse signals).

e, m—c

By uniformity of Ker(®), ® ~ N™*"(0,1) over the Grassmannian at the
origin, it is legitimate to fix a randomly drawn direction ¢/ ||| for the simulations.
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Figure 1. Geometrical intuition on the quantised eclipse problem for two disjoint £2-balls and n = 3, m = 2: (left) C1 and C2 are projected on @, identified by the
unit vectors ¢, ¢5; on these directions, we construct the lattice dZ™, with a shift £ of the origin due to dithering; the finite sets A(C1), A(C2) are also reported,
along with the consistency margin 7; (right) ensuring that A(C1) N A(C2) = 0 requires that any z € C™ is so that its image under ® has || ®z||oc > T; taking the
smallest of such values on the difference set yields the consistency margin, which is 7 = 0 when Ker(®) NC~ # 0.
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(a) Minimum consistency margin Tyin (b) Probability that A(C1) NA(C2) = @ at resolution § := 1
Figure 2. Empirical phase transitions of the quantised eclipse problem for the case of two disjoint £2-balls; for several random instances of ® and as a function of o
and the dimensionality reduction rate %, we report (a) the contours of logy Tmin; (b) the contours of ps = P[T > é] = 1 —n for é :== 1. In (a), the level curves of
Tmin are compatible, up to log factors, with the points {(,0) : m = 3%n/02} deduced from (2) in Prop. 1. In (b), the level curves of ps are also approximately

aligned with the iso-probability curves m — (:Tz*"s2 n & Clog(%), also deduced from (2), once we set ps ~ 1 —n € {0.25,0.5,0.75,0.9,0.95} for some C, ¢ > 1.
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