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Abstract—We study the problem of verifying when two disjoint closed
convex sets remain separable after the application of a quantised random
embedding, as a means to ensure exact classification from the signatures
produced by this non-linear dimensionality reduction. An analysis of the
interplay between the embedding, its quantiser resolution and the sets’
separation is presented in the form of a convex problem; this is completed
by its numerical exploration in a special case, for which the phase transition
corresponding to exact classification is easily computed.

I. PROBLEM STATEMENT

Non-linear dimensionality reduction techniques play an important role
in simplifying statistical learning on very large-scale datasets. Among
such techniques, we focus on quantised random embeddings obtained by
a non-linear map A applied to x ∈ K ⊂ Rn, that is

y = A(x) := Qδ(Φx+ ξ) (1)

with Φ ∈ Rm×n a random sensing matrix, Qδ(·) := δb ·
δ
c a uniform

scalar quantiser of resolution δ > 0 (applied component-wise), and the
signature y ∈ δZm. In (1), the dithering1 ξ ∼ Um([0, δ]) is a well-
known means to stabilise the action of the quantiser [1], [2].

The non-linear map (1) is a non-adaptive dimensionality reduction that
yields compact signatures for storage and transmission, while retaining
a notion of quasi-isometry that enables the approximation of x [2], [3].
Consequently, distance-based learning tasks preserve their accuracy if
run on A(K) rather than K, provided some requirements are met on
m, δ, the distribution of Φ and the “dimension” of K as measured,
e.g., by its Gaussian mean width w(K) := supx∈K |g>x| with g ∼
Nn(0, 1) (see, e.g., [2]). In this context we aim to show that, given
two classes described by some sets C1, C2 ⊂ K : C1 ∩ C2 = ∅ and
x ∈ C1 ∪ C2 ⊂ K, classifying whether x belongs to C1 or C2 is still
possible from y = A(x). For linear embeddings such as y = Φx,
Bandeira et al. [4] approach the above classification problem as follows.

Problem 1 (Rare Eclipse Problem (from [4])). Let C1, C2 ⊂ Rn : C1 ∩
C2 = ∅ be closed convex sets, Φ∼Nm×n(0, 1). Given η ∈ (0, 1), find
the smallest m so that p0 := P[ΦC1 ∩ΦC2 = ∅] ≥ 1− η.

Prob. 1 amounts to ensuring for all x′ ∈ C1, x′′ ∈ C2 that their images
Φx′ 6= Φx′′. Using the difference set C− := C1−C2 = {z := x′−x′′ :
x′ ∈ C1,x′′ ∈ C2} we see the above problem equals

P[∀z ∈ C−,Φz 6= 0m] = 1− P[∃z ∈ C− : Φz = 0m] ≥ 1− η.
This requires a bound on the probability that the kernel of Φ “collides”
with C−, i.e., P[Ker(Φ)∩C− 6= ∅] ≤ η, and [4] shows that η is small if
m is large compared to the “dimension” of C− as measured by w2

∩ :=
w2

(
(R+C−) ∩ Sn−1

)
with R+C− the cone generated by C−.

From this standpoint, extending such existing results on Prob. 1 to
non-linear maps as (1) is non-trivial. Applying A to each closed convex
set C1, C2 would produce two countable sets A(C1),A(C2) ⊂ δZm, and
assessing if they still “collide” is our key question below.

Problem 2 (Quantised Eclipse Problem). In the setup of Prob. 1,
given η ∈ (0, 1), find the smallest m so that P[A(C1) ∩ A(C2) = ∅] ≥
1− η, i.e., pδ := P[∀x′ ∈ C1,x′′ ∈ C2,A(x′) 6= A(x′′)] ≥ 1− η.

Note that the event in Prob. 2 requires P[∃ x′ ∈ C1,x′′ ∈ C2 :
A(x′) = A(x′′)] ≤ η, i.e., a bound on the probability of existence of
two consistent vectors (through the mapping A) that do not belong to
the same set.
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1A matrix denoted by M ∼ Xd1×d2 has entries Mij ∼i.i.d. X for a r.v. X .

We here leverage the quantised restricted isometry property (QRIP)
introduced in [2] to estimate η and the conditions on m. The QRIP
establishes some conditions on m that ensure 1

m
‖A(x′) − A(x′′)‖1 ≥

(c′ − ε)‖z‖ − cδε′ ≥ (c′ − ε)σ − cδε′ =: H for some controllable
distortions ε, ε′ > 0, with σ ≤ ‖z‖ and some constants c, c′ > 0.
Thus A(x′) 6= A(x′′) if H > 0. In particular, we deduce the following
proposition whose proof is postponed to an extended version of this work.

Proposition 1. In the setup of Prob. 2, let ri := rad(Ci), i ∈ {1, 2},
r := r1 + r2, and A defined in (1) with δ > 0. Given η ∈ (0, 1), if

m & (w2
∩ + n δ

2

σ2 )(1 + log(1 + rm
δn

) + w−2
∩ log 1

η
), (2)

then pδ ≥ 1− η.

Numerically testable but stronger conditions ensuring pδ > 1 − η in
Prob. 2 can be deduced as follows. We first note that if Φz = 0m for a
given Φ and any z ∈ C−, i.e., Ker(Φ) ∩ C− 6= ∅, then pδ = 0 for all
δ > 0 since then Φx′ + ξ = Φx′′ + ξ. Second, since A(x′) = A(x′′)
induces ‖Φz‖∞ ≤ δ for z := x′ − x′′ ∈ C−, proving p̄δ = P[∀z ∈
C−, ‖Φz‖∞ > δ] ≥ 1− η will solve Prob. 2 since pδ ≥ p̄δ .

We define accordingly a consistency margin τ := ‖Φz?‖∞ with

z? := argminz∈K ‖Φz‖∞ s.t. z ∈ C− := C1 − C2, (3)

i.e., as a property of Φ and C− so that, if τ > δ, we necessarily have
A(x′) 6= A(x′′) for x′,x′′ in different classes, i.e., p̄δ := P[τ > δ].
Intuitively, z? is related to the minimal separation σ between C1 and C2.

Note that (3) is clearly convex if K and C− are convex. We anticipate
that the construction of a certificate for this problem will provide a bound
on τ > δ when C− is known, and analyse an exemplary case afterwards.

II. NUMERICAL TEST FOR TWO DISJOINT `2-BALLS

We consider the simple, yet broadly applicable convex case of two balls
C1 := r1Bn`2 + c1 and C2 := r2Bn`2 + c2. Then, C− = rBn`2 + c with
c := c1 − c2 and r := r1 + r2 (see Fig. 1). In this context ‖c‖ = σ+ r
and w∩√

n
. r
‖c‖ ≤ r

σ
in Prop. 1 [4].

By solving random instances of this problem2 w.r.t. Φ ∼ Nm×n(0, 1),
with n = 28 and m ∈ [21, 28], we are able to compute the consistency
margin for each Φ on C−, which is varied by fixing r = 2 and taking
σ = ‖c‖ − r ∈ [20, 29]. Then, we collect τmin, i.e., the smallest τ
resulting from 27 trials for each configuration (Fig. 2a), and also estimate
on the same trials the probability p̄δ = P[τ > δ := 1] in Fig. 2b.

Fig. 2a reports several level curves of τmin. For each curve, the event
A(C1)∩A(C2) = ∅ holds if δ := τmin. While this condition is necessary
but not sufficient, these level curves are compatible with the points
(m
n
, σ) that satisfy the rule m ≈ δ2

σ2 n (up to log factors) induced by
(2) in Prop. 1. Fig. 2b displays a sharp phase transition in the contours
of p̄δ . Despite the fact that pδ ≥ p̄δ , the contours are also approximately
aligned with the iso-probability curves that can be deduced from (2),
i.e., m− c r2+δ2

σ2 n ≈ C log( 1
η

), with p̄δ ≈ 1− η for some C, c > 1.

III. CONCLUSION AND OPEN QUESTIONS

The fundamental limits of learning tasks with embeddings are being
tackled in several studies [5]–[8]. Our contribution expands the require-
ments for exact classification from the signatures produced by two closed
convex sets after quantised random embeddings. We shall also specify
this analysis to low-complexity structured sets K (e.g., selecting disjoint
“clusters” of sparse signals).

2By uniformity of Ker(Φ), Φ ∼ Nm×n(0, 1) over the Grassmannian at the
origin, it is legitimate to fix a randomly drawn direction c/‖c‖ for the simulations.
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Figure 1. Geometrical intuition on the quantised eclipse problem for two disjoint `2-balls and n = 3, m = 2: (left) C1 and C2 are projected on Φ, identified by the
unit vectors ϕ1,ϕ2; on these directions, we construct the lattice δZm, with a shift ξ of the origin due to dithering; the finite sets A(C1), A(C2) are also reported,
along with the consistency margin τ ; (right) ensuring that A(C1) ∩ A(C2) = ∅ requires that any z ∈ C− is so that its image under Φ has ‖Φz‖∞ > τ ; taking the
smallest of such values on the difference set yields the consistency margin, which is τ = 0 when Ker(Φ) ∩ C− 6= ∅.
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(a) Minimum consistency margin τmin
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(b) Probability that A(C1) ∩ A(C2) = ∅ at resolution δ := 1

Figure 2. Empirical phase transitions of the quantised eclipse problem for the case of two disjoint `2-balls; for several random instances of Φ and as a function of σ
and the dimensionality reduction rate m

n
, we report (a) the contours of log2 τmin; (b) the contours of p̄δ = P[τ > δ] ≈ 1− η for δ := 1. In (a), the level curves of

τmin are compatible, up to log factors, with the points {(m
n
, σ) : m ≈ δ2n/σ2} deduced from (2) in Prop. 1. In (b), the level curves of p̄δ are also approximately

aligned with the iso-probability curves m− c r
2+δ2

σ2 n ≈ C log( 1
η

), also deduced from (2), once we set p̄δ ≈ 1−η ∈ {0.25, 0.5, 0.75, 0.9, 0.95} for some C, c > 1.
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