The Rare Eclipse Problem in Quantised Random Embeddings: a Matter of Consistency?

Valerio Cambareri, Chunlei Xu and Laurent Jacques

ISPGroup, ICTEAM/ELEN, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

E-mail: {valerio.cambareri, chunlei.xu, laurent.jacques}@uclouvain.be

Abstract-We study the problem of verifying when two disjoint closed convex sets remain separable after the application of a quantised random embedding, as a means to ensure exact classification from the signatures produced by this non-linear dimensionality reduction. An analysis of the interplay between the embedding, its quantiser resolution and the sets' separation is presented in the form of a convex problem; this is completed by its numerical exploration in a special case, for which the phase transition corresponding to exact classification is easily computed.

I. PROBLEM STATEMENT

Non-linear dimensionality reduction techniques play an important role in simplifying statistical learning on very large-scale datasets. Among such techniques, we focus on quantised random embeddings obtained by a non-linear map A applied to $x \in \mathcal{K} \subset \mathbb{R}^n$, that is

$$\boldsymbol{y} = \mathsf{A}(\boldsymbol{x}) \coloneqq \mathcal{Q}_{\delta}(\boldsymbol{\Phi}\boldsymbol{x} + \boldsymbol{\xi}) \tag{1}$$

with $\mathbf{\Phi} \in \mathbb{R}^{m \times n}$ a random sensing matrix, $\mathcal{Q}_{\delta}(\cdot) \coloneqq \delta\lfloor \frac{\cdot}{\delta} \rfloor$ a uniform scalar quantiser of resolution $\delta > 0$ (applied component-wise), and the signature $\boldsymbol{y} \in \delta \mathbb{Z}^m$. In (1), the dithering $\boldsymbol{\xi} \sim \mathcal{U}^m([0, \delta])$ is a wellknown means to stabilise the action of the quantiser [1], [2].

The non-linear map (1) is a non-adaptive dimensionality reduction that yields compact signatures for storage and transmission, while retaining a notion of *quasi-isometry* that enables the approximation of x [2], [3]. Consequently, distance-based learning tasks preserve their accuracy if run on $A(\mathcal{K})$ rather than \mathcal{K} , provided some requirements are met on *m*, δ , the distribution of Φ and the "dimension" of \mathcal{K} as measured, *e.g.*, by its *Gaussian mean width* $w(\mathcal{K}) := \sup_{\boldsymbol{x} \in \mathcal{K}} |\boldsymbol{g}^{\top} \boldsymbol{x}|$ with $\boldsymbol{g} \sim$ $\mathcal{N}^n(0,1)$ (see, e.g., [2]). In this context we aim to show that, given two *classes* described by some sets $C_1, C_2 \subset \mathcal{K} : C_1 \cap C_2 = \emptyset$ and $x \in C_1 \cup C_2 \subset K$, classifying whether x belongs to C_1 or C_2 is still possible from y = A(x). For linear embeddings such as $y = \Phi x$, Bandeira et al. [4] approach the above classification problem as follows.

Problem 1 (Rare Eclipse Problem (from [4])). Let $C_1, C_2 \subset \mathbb{R}^n : C_1 \cap$ $C_2 = \emptyset$ be closed convex sets, $\Phi \sim \mathcal{N}^{m \times n}(0, 1)$. Given $\eta \in (0, 1)$, find the smallest m so that $p_0 := \mathbb{P}[\mathbf{\Phi}C_1 \cap \mathbf{\Phi}C_2 = \emptyset] \ge 1 - \eta$.

Prob. 1 amounts to ensuring for all $m{x}'\in\mathcal{C}_1,\,m{x}''\in\mathcal{C}_2$ that their images $\Phi x' \neq \Phi x''$. Using the difference set $C^- \coloneqq C_1 - C_2 = \{ z \coloneqq x' - x'' : z \coloneqq x' - x'' \}$ $\boldsymbol{x}' \in \mathcal{C}_1, \boldsymbol{x}'' \in \mathcal{C}_2$ we see the above problem equals

$$\mathbb{P}[\forall \boldsymbol{z} \in \mathcal{C}^{-}, \boldsymbol{\Phi} \boldsymbol{z} \neq \boldsymbol{0}_{m}] = 1 - \mathbb{P}[\exists \boldsymbol{z} \in \mathcal{C}^{-} : \boldsymbol{\Phi} \boldsymbol{z} = \boldsymbol{0}_{m}] \geq 1 - \eta$$

This requires a bound on the probability that the kernel of Φ "collides" with \mathcal{C}^- , *i.e.*, $\mathbb{P}[\operatorname{Ker}(\Phi) \cap \mathcal{C}^- \neq \emptyset] \leq \eta$, and [4] shows that η is small if m is large compared to the "dimension" of \mathcal{C}^- as measured by $w_{\Omega}^2 :=$ $w^2((\mathbb{R}_+\mathcal{C}^-)\cap\mathbb{S}^{n-1})$ with $\mathbb{R}_+\mathcal{C}^-$ the cone generated by \mathcal{C}^- .

From this standpoint, extending such existing results on Prob. 1 to non-linear maps as (1) is non-trivial. Applying A to each closed convex set C_1, C_2 would produce two countable sets $A(C_1), A(C_2) \subset \delta \mathbb{Z}^m$, and assessing if they still "collide" is our key question below.

Problem 2 (Quantised Eclipse Problem). In the setup of Prob. 1, given $\eta \in (0,1)$, find the smallest m so that $\mathbb{P}[\mathsf{A}(\mathcal{C}_1) \cap \mathsf{A}(\mathcal{C}_2) = \emptyset] \geq$ $1 - \eta$, i.e., $p_{\delta} := \mathbb{P}[\forall \boldsymbol{x}' \in \mathcal{C}_1, \boldsymbol{x}'' \in \mathcal{C}_2, \mathsf{A}(\boldsymbol{x}') \neq \mathsf{A}(\boldsymbol{x}'')] \geq 1 - \eta$.

Note that the event in Prob. 2 requires $\mathbb{P}[\exists x' \in \mathcal{C}_1, x'' \in \mathcal{C}_2]$: $A(\mathbf{x}') = A(\mathbf{x}'') \leq \eta$, *i.e.*, a bound on the probability of existence of two consistent vectors (through the mapping A) that do not belong to the same set.

The authors are funded by the F.R.S.-FNRS and by the project ALTERSENSE (MIS-FNRS). All authors have equally contributed to the realisation of this work. ¹A matrix denoted by $M \sim X^{d_1 \times d_2}$ has entries $M_{ij} \sim_{\text{i.i.d.}} X$ for a r.v. X.

We here leverage the quantised restricted isometry property (QRIP) introduced in [2] to estimate η and the conditions on m. The QRIP establishes some conditions on *m* that ensure $\frac{1}{m} \| \mathsf{A}(\mathbf{x}') - \mathsf{A}(\mathbf{x}'') \|_1 \ge (c' - \varepsilon) \|\mathbf{z}\| - c\delta\varepsilon' \ge (c' - \varepsilon)\sigma - c\delta\varepsilon' =: H$ for some controllable distortions $\varepsilon, \varepsilon' > 0$, with $\sigma \leq \|\boldsymbol{z}\|$ and some constants c, c' > 0. Thus $A(\mathbf{x}') \neq A(\mathbf{x}'')$ if H > 0. In particular, we deduce the following proposition whose proof is postponed to an extended version of this work.

Proposition 1. In the setup of Prob. 2, let $r_i := rad(C_i)$, $i \in \{1, 2\}$, $r \coloneqq r_1 + r_2$, and A defined in (1) with $\delta > 0$. Given $\eta \in (0, 1)$, if

$$m \gtrsim (w_{\cap}^2 + n \frac{\delta^2}{\sigma^2})(1 + \log(1 + \frac{rm}{\delta n}) + w_{\cap}^{-2} \log \frac{1}{\eta}), \tag{2}$$

then $p_{\delta} \geq 1 - \eta$.

Numerically testable but stronger conditions ensuring $p_{\delta} > 1 - \eta$ in Prob. 2 can be deduced as follows. We first note that if $\Phi z = \mathbf{0}_m$ for a given Φ and any $z \in C^-$, *i.e.*, $Ker(\Phi) \cap C^- \neq \emptyset$, then $p_{\delta} = 0$ for all $\delta > 0$ since then $\Phi x' + \xi = \Phi x'' + \xi$. Second, since A(x') = A(x'')induces $\|\Phi z\|_{\infty} \leq \delta$ for $z := x' - x'' \in C^-$, proving $\bar{p}_{\delta} = \mathbb{P}[\forall z \in C^-]$ $\mathcal{C}^{-}, \|\mathbf{\Phi} \mathbf{z}\|_{\infty} > \delta] \geq 1 - \eta$ will solve Prob. 2 since $p_{\delta} \geq \bar{p}_{\delta}$.

We define accordingly a *consistency margin* $\tau \coloneqq \| \Phi z^* \|_{\infty}$ with

$$\boldsymbol{z}^{\star} \coloneqq \operatorname{argmin}_{\boldsymbol{z} \in \mathcal{K}} \|\boldsymbol{\Phi} \boldsymbol{z}\|_{\infty} \text{ s.t. } \boldsymbol{z} \in \mathcal{C}^{-} \coloneqq \mathcal{C}_{1} - \mathcal{C}_{2}, \qquad (3)$$

i.e., as a property of Φ and C^- so that, if $\tau > \delta$, we necessarily have $A(\mathbf{x}') \neq A(\mathbf{x}'')$ for $\mathbf{x}', \mathbf{x}''$ in different classes, *i.e.*, $\bar{p}_{\delta} := \mathbb{P}[\tau > \delta]$. Intuitively, z^* is related to the minimal separation σ between C_1 and C_2 .

Note that (3) is clearly convex if \mathcal{K} and \mathcal{C}^- are convex. We anticipate that the construction of a certificate for this problem will provide a bound on $\tau > \delta$ when C^- is known, and analyse an exemplary case afterwards.

II. NUMERICAL TEST FOR TWO DISJOINT ℓ_2 -balls

We consider the simple, yet broadly applicable convex case of two balls $C_1 \coloneqq r_1 \mathbb{B}_{\ell_2}^n + c_1$ and $C_2 \coloneqq r_2 \mathbb{B}_{\ell_2}^n + c_2$. Then, $\mathcal{C}^- = r \mathbb{B}_{\ell_2}^n + c$ with $c \coloneqq c_1 - c_2$ and $r \coloneqq r_1 + r_2$ (see Fig. 1). In this context $||c|| = \sigma + r$ and $\frac{w_{\cap}}{\sqrt{n}} \lesssim \frac{r}{\|\mathbf{c}\|} \leq \frac{r}{\sigma}$ in Prop. 1 [4].

By solving random instances of this problem² w.r.t. $\mathbf{\Phi} \sim \mathcal{N}^{m \times n}(0, 1)$, with $n = 2^8$ and $m \in [2^1, 2^8]$, we are able to compute the consistency margin for each Φ on C^- , which is varied by fixing r = 2 and taking $\sigma = \|\boldsymbol{c}\| - r \in [2^0, 2^9]$. Then, we collect τ_{\min} , *i.e.*, the smallest τ resulting from 2^7 trials for each configuration (Fig. 2a), and also estimate on the same trials the probability $\bar{p}_{\delta} = \mathbb{P}[\tau > \delta \coloneqq 1]$ in Fig. 2b. Fig. 2a reports several level curves of τ_{\min} . For each curve, the event

 $A(\mathcal{C}_1) \cap A(\mathcal{C}_2) = \emptyset$ holds if $\delta := \tau_{\min}$. While this condition is necessary but not sufficient, these level curves are compatible with the points $(\frac{m}{n},\sigma)$ that satisfy the rule $m \approx \frac{\delta^2}{\sigma^2}n$ (up to log factors) induced by (2) in Prop. 1. Fig. 2b displays a sharp phase transition in the contours of \bar{p}_{δ} . Despite the fact that $p_{\delta} \geq \bar{p}_{\delta}$, the contours are also approximately aligned with the iso-probability curves that can be deduced from (2), *i.e.*, $m - c \frac{r^2 + \delta^2}{\sigma^2} n \approx C \log(\frac{1}{n})$, with $\bar{p}_{\delta} \approx 1 - \eta$ for some C, c > 1.

III. CONCLUSION AND OPEN QUESTIONS

The fundamental limits of learning tasks with embeddings are being tackled in several studies [5]-[8]. Our contribution expands the requirements for exact classification from the signatures produced by two closed convex sets after quantised random embeddings. We shall also specify this analysis to low-complexity structured sets \mathcal{K} (e.g., selecting disjoint "clusters" of sparse signals).

²By uniformity of Ker(Φ), $\Phi \sim \mathcal{N}^{m \times n}(0,1)$ over the Grassmannian at the origin, it is legitimate to fix a randomly drawn direction $c/\|c\|$ for the simulations.

Figure 1. Geometrical intuition on the quantised eclipse problem for two disjoint ℓ_2 -balls and n = 3, m = 2: (left) C_1 and C_2 are projected on Φ , identified by the unit vectors φ_1, φ_2 ; on these directions, we construct the lattice $\delta \mathbb{Z}^m$, with a shift $\boldsymbol{\xi}$ of the origin due to dithering; the finite sets $A(C_1)$, $A(C_2)$ are also reported, along with the consistency margin τ ; (right) ensuring that $A(C_1) \cap A(C_2) = \emptyset$ requires that any $\boldsymbol{z} \in C^-$ is so that its image under Φ has $\|\Phi \boldsymbol{z}\|_{\infty} > \tau$; taking the smallest of such values on the difference set yields the consistency margin, which is $\tau = 0$ when $\operatorname{Ker}(\Phi) \cap C^- \neq \emptyset$.

(a) Minimum consistency margin au_{\min}

(b) Probability that $A(C_1) \cap A(C_2) = \emptyset$ at resolution $\delta \coloneqq 1$

Figure 2. Empirical phase transitions of the quantised eclipse problem for the case of two disjoint ℓ_2 -balls; for several random instances of Φ and as a function of σ and the dimensionality reduction rate $\frac{m}{n}$, we report (a) the contours of $\log_2 \tau_{\min}$; (b) the contours of $\bar{p}_{\delta} = \mathbb{P}[\tau > \delta] \approx 1 - \eta$ for $\delta := 1$. In (a), the level curves of τ_{\min} are compatible, up to log factors, with the points $\{(\frac{m}{n}, \sigma) : m \approx \delta^2 n / \sigma^2\}$ deduced from (2) in Prop. 1. In (b), the level curves of \bar{p}_{δ} are also approximately aligned with the iso-probability curves $m - c \frac{r^2 + \delta^2}{\sigma^2} n \approx C \log(\frac{1}{\eta})$, also deduced from (2), once we set $\bar{p}_{\delta} \approx 1 - \eta \in \{0.25, 0.5, 0.75, 0.9, 0.95\}$ for some C, c > 1.

REFERENCES

- [1] R. M. Gray and D. L. Neuhoff, "Quantization," *IEEE Trans. Inf. Theory*, vol. 44, no. 6, pp. 2325–2383, 1998.
- [2] L. Jacques and V. Cambareri, "Time for dithering: fast and quantized random embeddings via the restricted isometry property," *Information and Inference: A Journal of the IMA*, Apr. 2017, accepted and in press.
- [3] A. Moshtaghpour, L. Jacques, V. Cambareri, K. Degraux, and C. De Vleeschouwer, "Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing," *IEEE Trans. Signal Process.*, vol. 23, no. 1, pp. 25–29, 2016.
- [4] A. S. Bandeira, D. G. Mixon, and B. Recht, "Compressive classification and the rare eclipse problem," *arXiv preprint arXiv:1404.3203*, 2014.
- [5] R. Giryes, G. Sapiro, and A. M. Bronstein, "Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?" *IEEE Trans. Signal Process.*, vol. 64, no. 13, pp. 3444–3457, 2015.
 [6] H. Reboredo, F. Renna, R. Calderbank, and M. R. Rodrigues, "Bounds on
- [6] H. Reboredo, F. Renna, R. Calderbank, and M. R. Rodrigues, "Bounds on the Number of Measurements for Reliable Compressive Classification," *IEEE Trans. Signal Process.*, vol. 64, no. 22, pp. 5778–5793, 2016.
- [7] N. Keriven, A. Bourrier, R. Gribonval, and P. Pérez, "Sketching for largescale learning of mixture models," in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 6190–6194.
- [8] N. Keriven, N. Tremblay, Y. Traonmilin, and R. Gribonval, "Compressive Kmeans," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017.