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Stabilizing Embedology: Geometry-Preserving
Delay-Coordinate Maps
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Modern science is ingrained with the premise that repeated ob-
servations of a dynamic phenomenon can help us understand its
underlying mechanisms and predict its future behavior. The field of
nonlinear time-series analysis models time-series data as observations
of the state of a (possibly high-dimensional) deterministic nonlinear
dynamical system [1]. It is often postulated that the underlying dy-
namical system is governed by an attractor that is a low-dimensional
geometric subset of the state space, making it reasonable to postulate
that temporal dependencies in time-series observations can provide
some insight into the structure of the hidden dynamical system. This
leads to a fundamental question: How much information about a
hidden dynamical system is available in time-series measurements
of the system state?

Our main contribution is to present a new theoretical result that,
for the first time, provides insight into the conditions for when time-
series data can (and cannot) be used to reconstruct a geometry-
preserving image of the attractor. This result provides formal foun-
dations for many algorithms currently in use for tasks such as time
series prediction, as well as giving guidance to choosing algorithmic
parameters that are normally chosen heuristically. This is a general
result potentially having impact across a wide variety of disciplines,
as well providing a concrete bridge between the modern tools used
by the compressed sensing community and the classic questions of
physics and nonlinear dynamical systems.

Specifically, consider x(·) as the trajectory of a dynamical system
in the state space RN such that x(t) ∈ RN for t ∈ [0,∞). While the
system has continuous underlying dynamics, we observe this system
at a regular sampling interval T > 0. We assume that during the times
of interest the state trajectory is contained within a low-dimensional
attractor [1] A such that x(t) ∈ A ⊂ RN for t ≥ 0. The attractor A
is assumed to be a bounded, boundary-less, and smooth submanifold
of RN with dim(A) < N . In applications of interest we often cannot
directly observe this system state but rather receive indirect measure-
ments via a scalar measurement function h : A → R. This function
generates a single scalar measurement at a regular sampling interval
T > 0, producing the discrete time series {si}i∈N = {h(x(i ·T ))}i,
where each si ∈ R. The goal is to “reconstruct” the hidden state
trajectory x(·) given only {si}i. To approach this task, consider the
delay-coordinate map Fh,T,M : A → RM , defined for an integer
number of delays M through the relation

Fh,T,M (x(i · T )) =
[
si si−1 · · · si−M+1

]T
. (1)

Note that the delay-coordinate map is simply formed at a given time
by stacking the last M observed time-series values into a vector.
Commonly, RM is referred to as the reconstruction space.

The seminal Takens’ embedding theorem [2], [3] asserts that (under
very general conditions) it is indeed possible to reconstruct the state
space from the time-series data. With this setup, Takens’ result
roughly states that if M > 2 · dim(A), then the delay-coordinate
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map Fh,T,M (·) resulting from almost every smooth measurement
function h(·) embeds the attractor A into the reconstruction space
RM (i.e., the delay-coordinate map forms a diffeomorphism for A).
Figure 1 illustrates the concept of a delay-coordinate map in the
case of the widely-known Lorenz attractor. While the trajectory in
the reconstruction space Fh,T,M (x(·)) is (topologically) equivalent
to the trajectory in the state space x(·)—because no two points from
the attractor map onto each other in the reconstruction—the mapping
could be unstable in the sense that close points may map to points
that are far away (and vice versa).

Following the recent literature on various forms of randomized
dimensionality reduction [4], [5], we seek conditions under which
the delay-coordinate map Fh,T,M (·) is a stable embedding of the
attractor A by acting as a near-isometry on A:

εl ≤
‖Fh,T,M (x)− Fh,T,M (y)‖22

M · ‖x− y‖22
≤ εu, ∀x, y ∈ A, x 6= y

(2)
for some isometry constants 0 < εl ≤ εu <∞. If εl ≈ εu, the stable
embedding condition of (2) guarantees that the delay-coordinate
map preserves the geometry of the attractor (rather than merely its
topology) by ensuring that pairwise distances between points on the
attractor are approximately preserved in the reconstruction space.

Our main result gives the conditions on the attractor A, measure-
ment function h(·), number of delays M , and sampling interval T
such that Fh,T,M (·) is a stable embedding of A. This is a more ambi-
tious objective than Takens’ embedding theorem (leading naturally to
more restrictive conditions), but with the benefit of quantifying the
quality of the embedding and relating that quality to the problem-
specific parameters. Roughly speaking (due to space constraints—
see [6] for full detail), our main result shows that Fh,T,M (·) stably
embeds A (in the sense of (2)) for most measurement functions h,
provided that the following condition is satisfied:

RH,T,M (A) & dim(A) · log

(
vol(A)

1
dim(A)

rch(A)

)
. (3)

Here, dim(A) and vol(A) are the dimension and volume of the
attractor A ⊂ RN , and rch(A) is an attribute of A that captures its
geometric regularity. To quantify the notion of “most” measurement
functions, our result is probabilistic and holds with high probability
over measurement functions drawn from a rich probability model H .
The stable rank RH,T,M (A) of A quantifies the ability of the random
measurement functions to observe the system attractor. Typically, if
a dynamical system is fairly “predictable”, then RH,T,M (A) grows
proportionally with M as the number of delays grows. In this case,
the delay-coordinate map stably embeds A when the number of delays
scales linearly with the dimension of the attractor as in Takens’
original theorem; an example of such behavior is given in Figure 2.
On the other hand, if the dynamical system is highly unpredictable,
then it is likely that RH,T,M (A) plateaus rapidly with increasing M
and it will be more difficult to stably embed this system through
delay-coordinate mapping even with very long delay vectors. As we
will discuss, these conditions also have a natural interpretation in the
context of classical empirical methods for choosing T and M [7]–[9].
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Figure 1: (a) The state space trajectory of the Lorenz attractor in R3,
demonstrating the characteristic butterfly pattern. (b) The time series
obtained by a measurement function that only keeps the x1-coordinate of
the trajectory. (c) The delay-coordinate map points withM = 2, recreating
the butterfly pattern using only the time series.
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Figure 2: Stable rank and quality of delay-coordinate mapping for an
example system described in [6]. (a) Stable rank versus M (number of
delays) with fixed sampling interval. Note that the stable rank of the system
gradually improves with increasing M . (b) Quality of embedding through
delay-coordinate mapping as measured by the isometry constants εl ≤ εu
versusM (see (2)). Note that, like the stable rank, the quality of embedding
gradually improves with increasing M .
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