
Computing the Spark of a Matrix
Andreas M. Tillmann

Operations Research Group & Visual Computing Institute
RWTH Aachen, Germany

Email: andreas.tillmann@cs.rwth-aachen.de

Marc E. Pfetsch
Research Group Optimization

TU Darmstadt, Germany
Email: pfetsch@mathematik.tu-darmstadt.de

Abstract—The spark of a matrix, i.e., the smallest number of linearly
dependent columns, plays an important role in sparse signal recovery and
compressed sensing; for instance, it yields characterizations of unique
reconstructability. We develop several approaches to tackle the NP-hard
problem of computing the spark; in particular, we propose a novel branch
& cut scheme based on an integer program arising from a matroid circuit
formulation. The potential advantage of our algorithm compared to using
general-purpose solvers (applied to a mixed-integer programming model)
is demonstrated in some numerical experiments.

I. INTRODUCTION

The spark of a matrix is defined as

spark(A) := min{‖x‖0 : Ax = 0, x 6= 0}.

In the context of compressed sensing and the sparse recovery problem

min ‖x‖0 s.t. Ax = b, (P0)

the spark is essential regarding uniqueness of solutions (e.g., every
k-sparse vector x̂ uniquely solves (P0) with b := Ax̂ if and only if
2k < spark(A)); it is also a key ingredient in identifying ambiguities
in linear sensor arrays (see, e.g., [1]), and other applications.

The spark of a matrix A is also known as the girth of the
matroid1 associated with the columns of A, sometimes called the
linear or vector matroid induced by A, for which the (in-)dependent
sets are given by sets of linearly (in-)dependent columns. Spark
computation was shown to be NP-hard in [2, Theorem 1 (cf.
Corollary 1)]. Although, via matroid duality, one could in principle
employ algorithms designed for computing the co-girth (see, e.g., [4],
[5], [6]), no methods to directly determine spark(A) appear to be
known so far except the obvious brute-force approach.

Throughout, we assume w.l.o.g. that A ∈ Rm×n with rank(A) =
m < n and Aj 6= 0 for all j ∈ [n] := {1, . . . , n}, which is the
natural situation (and can always be guaranteed by preprocessing).

II. POLYNOMIAL-TIME SOLVABLE SPECIAL CASES

Despite NP-hardness in general, the spark can be obtained efficiently
for certain matrix classes. The following result generalizes well-
known special cases such as A being the oriented incidence matrix of
a graph G (representing the associated graphical matroid), for which
spark(A) can be computed in polynomial time (poly-time, for short)
as the length of the shortest cycle in G.

Theorem 1. If A is unimodular (i.e., every m×m submatrix A′ has
det(A′) ∈ {0,±1}), then spark(A) can be determined in poly-time.

Due to space limitations, we omit the proof; it uses the following
auxiliary result, which may be of interest in its own right.

Proposition 2. Problem (P0) can be solved in poly-time (by means
of the corresponding `1-minimization problem) if b ∈ {0,±c}m for
some c ∈ R and the matrix A is unimodular.

M. E. Pfetsch is supported by the EXPRESS project within the SPP 1798
funded by the German Research Foundation (DFG).

1We refer to [3] for details on matroid theory.

III. (MIXED-) INTEGER PROGRAMMING APPROACHES

To compute spark(A) for a given matrix A, we may apply
general-purpose mixed-integer program (MIP) solvers to the model

min
x∈Rn;y,z∈{0,1}n

{
1
>y : Ax = 0, −y+2z ≤ x ≤ y, 1>z = 1

}
.

(1)
Note that sign symmetry in nullspace vectors is eliminated by setting
a specific xj to 1 (the choice is left to the solver via the binary
variables z) and that −1 ≤ x ≤ 1 holds implicitly.

To avoid the increase in variables and obtain a pure integer (binary)
program, we can employ the following result on circuits in matroids,
i.e., the inclusion-wise minimal dependent sets.

Lemma 3. Let M be a matroid over E. Then, C ⊆ E contains a
circuit of M if and only if C ∩B 6= ∅ for all bases B of M.

Since spark(A) is the length of a shortest circuit in the associated
linear matroid M[A], we can compute it with the IP

min
y∈{0,1}n

{
1
>y :

∑
j /∈B

yj ≥ 1 ∀B ⊂ [n] : rank(AB) = |B| = m
}
.

(2)
However, since there may be exponentially many bases B forM[A],
we do not want to write down all these constraints explicitly;
instead, we may generate them dynamically within a branch & bound
procedure, to cut off current fractional linear programming relaxation
solutions ŷ in the iterative model strengthening process. Indeed, a
maximally violated such cut can be found efficiently:

Theorem 4. Given ŷ ∈ [0, 1]n, a basis B of M[A] such that∑
j /∈B yj < 1 can be found (or proven not to exist) in poly-time.

Proof: Due to the matroid structure, the greedy algorithm is
optimal: We traverse the indices in decreasing order of their ŷ-
values and add an index to B (starting with the empty set) if the
corresponding column set AB remains linearly independent (which
can be checked using Gaussian elimination), until |B| = m.

We implemented the branch & cut algorithm in SCIP [7]. Besides
the basic separation routine based on Theorem 4, the algorithm
includes several other aspects that aid the solving process; for
instance, current nodes can be pruned if any solution remaining in the
branch corresponds to linearly independent column subsets, and the
nonzero structure of A can be exploited for inferring local variable
fixings. Space limitation disallows us going into more detail here.

Some preliminary numerical experiments are gathered in Table I.

IV. CONCLUSION

Our specialized branch & cut algorithm allows to compute the
spark of a given matrix more efficiently than commercial MIP-
solvers applied to black-box models. More rigorous numerical tests
and tuning algorithmic parameters are still on the agenda, as is
looking into solving (1) with the additional separation of covering-
type inequalities from (2) (note that y is the same in both models).

TABLE I
EXPERIMENTAL RESULTS FOR SEVERAL DETERMINISTIC SENSING

MATRICES A ∈ Rm×n CONSTRUCTED WITH THE METHOD FROM [8]. ALL
INSTANCES WERE SOLVED TO OPTIMALITY BY EITHER SOLVER EXCEPT
TWO FOR WHICH GUROBI REACHED A 1 HOUR TIME LIMIT (LABELLED

"TIMEOUT" IN THE RUNTIME COLUMN), WHERE THE RESPECTIVE
OPTIMALITY GAPS WERE STILL AT 200% AND 100%, RESPECTIVELY. THE

TESTS WERE CARRIED OUT SINGLE-THREAD ON A LINUX 64-BIT
QUAD-CORE MACHINE (2.8 GHZ, 8 GB RAM) RUNNING SCIP 3.2.1 WITH
CPLEX 12.6.1 AS LP SOLVER, AND GUROBI 6.5.0, RESP. THE COLUMN

LABELED µ ADDITIONALLY GIVES THE RESP. MUTUAL COHERENCE,
WHICH IMPLIES LOWER BOUNDS 1 + 1/µ(A) ON THE SPARK OF A.

Br. & Cut (model (2)) Gurobi (model (1))

m n µ spark time [s] nodes time [s] nodes

24 50 1/2 4 0.18 49 0.43 2258
41 50 1/3 8 0.15 47 0.43 880
41 100 1/3 6 1.27 269 75.29 47119
59 100 1/3 8 1.05 226 49.47 16280
83 100 1/3 8 0.86 96 3.44 6696
52 200 1/2 4 4.73 221 18.13 26033
68 200 1/2 4 2.46 205 9.78 15525

120 200 1/4 15 1175.71 21809 timeout (862592)
131 200 1/3 8 10.67 200 355.60 288186

84 300 1/2 4 52.27 449 32.98 26550
109 500 1/3 6 229.50 1891 timeout (218376)

REFERENCES

[1] A. MANIKAS AND C. PROUKAKIS, Modeling and Estimation of Ambi-
guities in Linear Arrays, IEEE Transactions on Signal Processing, 46
(1998), pp. 2166–2179.

[2] A. M. TILLMANN AND M. E. PFETSCH, The Computational Complexity
of the Restricted Isometry Property, the Nullspace Property, and Related
Concepts in Compressed Sensing, IEEE Transactions on Information
Theory, 60 (2014), pp. 1248–1259.

[3] J. G. OXLEY, Matroid Theory, Oxford Graduate Texts in Mathematics,
Oxford University Press 1992.

[4] K. KIANFAR, A. POURHABIB, AND Y. DING, An integer programming
approach for analyzing the measurement redundancy in structured linear
systems, IEEE Transactions on Automation Science and Engineering, 8
(2011), pp. 447–450.

[5] J. D. ARELLANO AND I. V. HICKS, Degree of Redundancy of Linear
Systems using Implicit Set Covering, IEEE Transactions on Automation
Science and Engineering, 11 (2014), pp. 274–279.

[6] J. D. ARELLANO, Algorithms to Find the Girth and Cogirth of a Linear
Matroid, PhD thesis, Rice University, 2014.

[7] G. GAMRATH AND T. FISCHER AND T. GALLY AND A. M. GLEIXNER
AND G. HENDEL AND T. KOCH AND S. J. MAHER AND M. MIL-
TENBERGER AND B. MÜLLER AND M. E. PFETSCH AND C. PUCHERT
AND D. REHFELDT AND S. SCHENKER AND R. SCHWARZ AND
F.SERRANO AND Y. SHINANO AND S. VIGERSKE AND D. WENINGER
AND M. WINKLER AND J. T. WITT AND J. WITZIG, The SCIP Op-
timization Suite 3.2, ZIB Tech. Rep. 15-60, 2016. Code available at
www.scip.zib.de.

[8] M. A. IWEN, Simple deterministically constructible RIP matrices with
sublinear fourier sampling requirements, Proceedings of the 43rd Annual
Conference on Information Sciences and Systems (CISS), John Hopkins
University, IEEE, 2009, pp. 870–875.

