
Recovery of Nonlinearly Degraded Sparse Signals through
Rational Optimization

Marc Castella
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Abstract—We show the benefit which can be drawn from recent global
rational optimization methods for the minimization of a regularized
criterion. The regularization term is a rational Geman-McClure like
potential, approximating the ℓ0 norm and the fit term is a least-squares
criterion suitable for a wide class of nonlinear degradation models.

I. INTRODUCTION

Over the last decade, much attention has been paid to inverse
problems involving sparse signals. A popular approach consists in
formulating such problems under a variational form where one
minimizes the sum of a data fidelity term and a regularization term
incorporating prior information. For sparse signals, the regularization
term may involve the ℓ0 norm, or an approximation of it [1]. This
generally results in difficult optimization problems with many local
minima and weak global convergence guarantees [2]–[6]. In this
work, we consider rational optimization algorithms offering global
optimality guarantees. In addition, our method allows us to address
the challenging case of a nonlinear model [7]–[9].

II. MODEL AND CRITERION

Consider a sparse vector with unknown nonnegative samples
x := (x1, . . . , xT )

⊤, only a few of which are nonzero. We aim
at recovering it from measurements y := (y1, . . . , yT )

⊤ related to
x through a linear transformation (typically, a convolution) followed
by some nonlinear effects:

y = ϕ(Hx) + n , (1)

where n := (n1, . . . , nT )
⊤ is a realization of a random noise vector,

and ϕ : RT → RT is a rational nonlinear function with components
[ϕ(u)]k = ϕ(uk) depending on the kth entry uk only. H ∈ RT×T is
a given convolution matrix, which is assumed Toeplitz banded under
suitable vanishing boundary conditions. To estimate x, we minimize
a penalized criterion having the following form:

(∀x ∈ RT
+) J (x) = ∥y − ϕ(Hx)∥2 + λ

T∑
t=1

xt

δ + xt
, (2)

where λ and δ are positive regularization and smoothing parameters.
The last term is a Geman-McClure like potential as in [10]. We
assume that an upper-bound B on the values (xt)

T
t=1 is available and

the minimization is thus performed over a compact set defined and
represented by K = {x ∈ RT |xt(B − xt) ≥ 0, t = 1, . . . , T}. The
optimization problem consists then in finding J ⋆ := infx∈K J (x) .

III. RATIONAL MINIMIZATION

Given J in (2), the previous minimization is a rational problem.
The methodology in [11, 12] builds for different orders k a hierarchi-
cal sequence of semi-definite programming (SDP) relaxations P⋆

k for
which the following optimality result holds: P⋆

k ↑ J ⋆ as k → +∞.

By using SDP solvers to solve P⋆
k , one can hence theoretically

obtain the global optimum [10]. Due to the maximum tractable size
of state of the art SDP solvers, this approach is however limited
to small/medium size problems having small degree, even when
restricting the hierarchy to a finite and small order k. To overcome
this difficulty, we exploit the problem structure in the sum of rational
terms in (2). Using the sparse Toeplitz banded shape of H, it can be
noticed that:

J (x) =
T∑

t=1

[
yt − ϕ

(
L∑

i=1

hixt−i+1

)]2
︸ ︷︷ ︸

depends on xk for k ∈ Jt

+ λ
xt

δ + xt︸ ︷︷ ︸
depends on xt only

,

where Jt = {min{1, t − L − 1}, . . . , t} and Jt+T = {t} for
any t ∈ {1, . . . , T}. These index subsets satisfy the so-called
“Running Intersection Property” [13]. As a consequence, it is possible
to introduce a much smaller SDP relaxation P⋆s

k instead of P⋆
k .

The fundamental idea is that the SDP relaxations involve variables
representing monomials in (x1, . . . , xT ). Using the above split form,
many monomials can be discarded, the most striking case being when
J is fully separable.

IV. EXPERIMENTS

We have generated 100 Monte-Carlo realizations of vector x
containing T = 200 sparse samples, exactly 20 of which are nonzero.
The nonzero sample values were randomly drawn in [ 2

3
; 1]. We have

generated y according to (1) with the nonlinearity ϕ(uk) =
uk

0.3+uk

and with additive i.i.d. zero-mean Gaussian noise with standard
deviation σ = 0.15. The banded Toeplitz matrix H has been set
in accordance with two choices of FIR filters of length 3 (denoted
h(a) and h(b)). We have considered the estimate x⋆s

3 given by the
optimal point of the SDP relaxation P⋆s

3 of order k = 3.
For comparison, we have implemented a classical gradient descent

minimization of J and a proximal gradient algorithm based on
Iterative Hard Thresholding (IHT) [3] extended to the the nonlinear
model. Also, we have tested a convex relaxation based on a linearized
reconstruction with ℓ1 penalization. The local optimization algorithms
have been started with different initializations and Table I indicates
the existence of local minima.

On Figure 1, we have plotted the value P⋆s
3 reached by the SDP

relaxation (which is a lower bound on J ⋆), the objective value
J (x⋆s

3 ) and the objective value reached using IHT using two different
initializations. Clearly, our method provides a point close to a global
minimizer and is very useful in providing a good initialization point
for local optimization algorithms.

Finally, the estimation error has been quantified by ∥x̂ − x∥
for a given estimate x̂. The average error and objective values are
summarized in Table II.



TABLE I
FINAL VALUES OF THE OBJECTIVE J (x) FOR THE CLASSICAL GRADIENT
AND IHT LOCAL OPTIMIZATIONS (AVERAGE OVER 100 MONTE-CARLO

REALIZATIONS). NOTE THAT OUR PROPOSED INITIALIZATION x⋆s
3 LEADS

TO THE LOWEST OBJECTIVE VALUE.

Gradient minimization
Filter
param.

Initialization
x⋆s
3 ℓ1 y zero x

h(a) 6.9219 15.136 31.338 16.041 7.0894
h(b) 6.7078 13.245 30.222 18.060 7.0894

IHT minimization
Filter
param.

Initialization
x⋆s
3 ℓ1 y zero x

h(a) 6.6943 8.4078 8.4129 16.041 6.7628
h(b) 6.6292 8.3442 8.2598 14.664 6.7372
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Fig. 1. Objective values provided by the different algorithms and lower-bound
(using filter h(a)).

TABLE II
FINAL VALUES OF THE OBJECTIVE J (x) AND ESTIMATION ERROR GIVEN
BY THE PROPOSED METHOD AND IHT WITH DIFFERENT INITIALIZATIONS
(AVERAGE OVER 1000 MONTE-CARLO REALIZATIONS), SHOWING THAT A

LINEARIZED RECONSTRUCTION IS NOT ADAPTED FOR THE CONSIDERED
NONLINEAR MODEL.

Objective Error
Filter param. h(a) h(b) h(a) h(b)

Proposed method 6.9219 6.7078 1.3278 1.5408
Proposed method + IHT 6.6943 6.6292 1.3374 1.5393

linear + ℓ1 +IHT 8.4078 8.3442 1.5575 1.6833
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