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I. INTRODUCTION AND BACKGROUND

Distributed sparse parameter estimation using autonomous and
ad hoc wireless sensor networks is a promising approach to many
environmental monitoring problems and forms a natural application
of compressed sensing [1], [2]. Such networks have advantages
over conventional sensing technologies in terms of costs, coverage,
redundancy, and reliability. Typical applications are structural health
monitoring, medical sensor solutions, traffic monitoring as well as
warning systems for heat, fire, seismic activities, or meteorologic
disturbances. While several communication standards, embedded
platforms, and operating systems are available for such a problem
setting, some of the inherent limitations of these transceiver designs
are low transmission and computing power due to battery saving. For
example, radio-frequency (RF) components usually only provide low
signal quality caused by phase noise and non-linear effects, such as
ADC impairments or IQ imbalances (e.g., see “Dirty RF” [3]). It is
therefore important to devise approaches to recovery under such non-
ideal conditions. In this work, we will present a robust and simple
method for sparse recovery from superimposed, non-linearly distorted
measurements.

II. MODEL SETUP AND ALGORITHMIC APPROACH

We consider a model setup where multiple sensor nodes perform
individual measurements on the same source. For example, such
sensor readings could be spatial samples of a temperature field in
a building or measurements of the water flow and quality taken at
different locations. The fluctuation of these quantities are typically
specified by only a small number of active parameters which can
be modeled by a sparse vector in a known transform domain, e.g.,
Fourier or wavelets.

From a mathematical perspective, the above problem is as follows:
Let x0 ∈ Rn be the sparse vector that we would like to recover via
a network of M wireless sensors. In the i-th measurement step, all
nodes j = 1, . . . ,M directly transmit their uncoded sensor readings
〈aji ,x0〉, where aji ∈ Rn denotes the i-th measurement vector of the
j-th sensor. Note that this model is motivated by the desire to have an
autonomous and ad hoc transmission procedure, bypassing additional
resource and time overheads. Due to the imperfect RF components
and the wireless channel, this leads to a superposition of non-linearly
distorted signals at the receiver. The resulting measurement process
therefore takes the form

yi =

M∑
j=1

fj(〈aji ,x0〉) + ei, i = 1, . . . ,m, (1)

where ei ∼ N (0, ν2) is independent noise and the scalar function
fj : R → R models the (memoryless) non-linear distortion of the
j-th sensor, which could be even unknown (see also Fig. 1 for an
illustration). Our goal is now to efficiently recover x0 from as few
as possible measurements.

...

Fig. 1. A schematic sensor network: Each wireless sensor j = 1, . . . ,M
acquires i = 1, . . . ,m individual measurements of a (sparse) source vector
x0 ∈ Rn using different “viewpoints” aji ∈ Rn. These measurements are
simultaneously transmitted to a central receiver for recovery. Thereby, each
sensor reading 〈aji ,x0〉 is affected by a possibly unknown, noisy, and non-
linear distortion fj : R→ R.

The recent works of [4], [5] have shown that a single-index model,
i.e., (1) with M = 1, can be estimated via the vanilla Lasso. In fact,
it turns out that such a strategy can be also applied to the more
general measurement scheme of (1). For this purpose, we mimic the
additive structure of (1) by computing superimposed measurement
vectors ai :=

∑M
j=1 a

j
i , i = 1, . . . ,m, and solve the program

min
x∈Rn

m∑
i=1

(〈ai,x〉 − yi)2 subject to ‖x‖1 ≤ R, (PR)

where the tuning parameter R > 0 controls the level of sparsity
of the minimizer. Remarkably, this approach does neither explicitly
depend on the non-linearities fj nor on the number of sensors M . In
particular, the individual measurement vectors aji do not have to be
known to the fusion center, so that the overall computational costs
of (PR) will not increase as M grows.

III. THEORETICAL AND NUMERICAL RESULTS

In a first theoretical study, we have analyzed the Gaussian case,
i.e., aji ∼ N (0, In) are i.i.d. standard normal vectors. In order to
specify the degree of distortion that is caused by the output functions
fj in (1), we define two model parameters:

µ := 1
M

M∑
j=1

E[fj(g) · g] and σ2 := 1
M

M∑
j=1

‖fj(g)− µg‖2ψ2
,

with g ∼ N (0, 1) and ‖·‖ψ2 being the sub-Gaussian norm. Intu-
itively, µ measures the expected rescaling that comes along with
the non-linearities in (1) compared to its linear counterpart, and σ2

captures the corresponding variance. We are now ready to state our
main recovery guarantee, which is based on a recent result from [6]:



Fig. 2. Recovery of a 4-sparse vector from m = 32 sensor measurements
with a softcut non-linearity fj(g) := sign(g) · min{|g|, α}, α > 0. The
plot shows the mean squared error (MSE) of the reconstruction via (PR) for
different values of α. The “horizontal distances” between the single curves
determine the number of extra sensors required to achieve the same recovery
performance. This is of particular practical interest if the price of low-power
sensors (small α) is significantly lower than the one of high-quality sensors
(large α).

Theorem 1. Let ‖x0‖2 = 1 and ‖µx0‖1 ≤ R for some R > 0.
Then, there exist constants C1, C2, C3 > 0 such that the following
holds with probability at least 1−2 exp(−C1 ·u2)−3 exp(−C1 ·m)
for every u > 0: If m ≥ C2 · R2 log(2n), then any minimizer x̂ of
the Lasso (PR) satisfies

∥∥∥ x̂
µ
−x0

∥∥∥
2
≤ C3 ·

max{1, [σ2 + ν2

M
]
1
2 }

µ
·
[(R2 log(2n)

m

) 1
4
+

u√
m

]
.

We would like to emphasize that the non-linearities fj as well as
the sensor count M affect the above error bound only in terms of the
constant ratio max{1, [σ2+ν2/M ]1/2}/µ and a rescaling of x̂. The
impact of the noise ei ∼ N (0, ν2) becomes in fact even smaller as
M grows, which implies that enlarging a sensor network can lead to
more accurate and stable recoveries (see Fig. 2 for numerical results).

Therefore, a reconstruction from sensor measurements (1) becomes
essentially feasible if m exceeds R2 log(2n). When the sparsity of x0

is approximately known, say x0 is s-sparse, the above result applies
with R = µ

√
s. In this case, the number of required measurements

scales as O(s log(2n)), which resembles the typical flavor of results
from compressed sensing theory.

Remark. The above theorem can be extended to sub-Gaussian random
vectors, structured sparsity as well as deterministic measurement
noise. Moreover, one could also consider a “lifted” version of the
Lasso where each measurement vector aji is treated individually. Such
an approach is of higher computational complexity but in turn allows
us to handle practically relevant situations where µ ≈ 0.
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[3] G. Fettweis, M. Löhning, D. Petrovic, M. Windisch, P. Zillmann, and
W. Rave, “Dirty RF: A new paradigm,” Int. J. Wireless Inform. Network.,
vol. 14, no. 2, pp. 133–148, 2007.

[4] Y. Plan and R. Vershynin, “The generalized Lasso with non-linear
observations,” IEEE Trans. Inf. Theory, vol. 62, no. 3, pp. 1528–1537,
2016.

[5] M. Genzel, “High-Dimensional Estimation of Structured Signals From
Non-Linear Observations With General Convex Loss Functions,” IEEE
Trans. Inf. Theory, vol. 63, no. 3, pp. 1–19, 2017.

[6] S. Mendelson, “Upper bounds on product and multiplier empirical pro-
cesses,” Stoch. Proc. Appl., vol. 126, no. 12, pp. 3652–3680, 2016.


