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Abstract—From a numerical analysis perspective, assessing the robust-
ness of `1-minimization is a fundamental issue in compressed sensing
and sparse regularization. Yet, the recovery guarantees available in the
literature usually depend on a priori estimates of the noise, which can be
very hard to obtain in practice. In this work, we study the performance of
`1-minimization when these estimates are not available, providing robust
recovery guarantees for quadratically constrained basis pursuit and ran-
dom sampling in bounded orthonormal systems. Applications of this work
include approximation of high-dimensional functions, infinite-dimensional
sparse regularization for inverse problems, and fast algorithms for non-
Cartesian Magnetic Resonance Imaging.

I. INTRODUCTION

In Compressed Sensing (CS) and sparse representations we deal
with underdetermined linear systems of equations [7], [9]

y = Ax+ n, (1)

where A ∈ Cm×N , with m� N , is the sensing matrix, x ∈ CN is
an unknown signal, and y ∈ Cm is the vector of measurements
perturbed by noise n ∈ Cm. This corruption could be due to
physical noise produced by the measuring device, to approximation
errors in the model, or to numerical factors. Some examples are
model error in inverse problems such as MRI [13], [16], the so-
called “inverse crime” committed in infinite-dimensional CS when
truncating the signal to its finite dimensional representation [1], [4],
or the quadrature error involved in the evaluation of the bilinear form
associated with a PDE [5], [6].

A standard tool to regularize the inverse problem (1) and recover
a good approximation x̂ to the solution x (assumed to be sparse
or compressible) is the Quadratically Constrained Basis Pursuit
(QCBP) optimization program

x̂ := argmin ‖z‖1, s.t. ‖Az− y‖2 ≤ η, (2)

also called Basis Pursuit (BP) when η = 0.

II. THE CRUCIAL ROLE OF η

Usually, in order to study the recovery guarantees of (2), the
parameter η is assumed to control the noise magnitude, i.e.,

‖n‖2 ≤ η. (3)

Indeed, under the regime (3) and with suitable hypotheses on the
sensing matrix A (e.g., based on the restricted isometry property), the
following type of recovery error estimate holds with high probability

‖x− x̂‖2 .
σs(x)1√

s
+ η, (4)

where σs(x)1 is the best s-term approximation error of x with respect
to the `1-norm [8], [11].

Unfortunately, a priori estimates of the noise of the form (3)
may not be available in real applications of CS. Moreover, since
the recovery error estimate (4) is sensitive to η, the choice of this

parameter is crucial. In practice, one could resort to cross-validation
in order to tune this parameter, but this technique could be time-
consuming or inaccurate and it is not properly understood from a
theoretical perspective [10].

In order to show the importance of η, let us consider a simple
example. In Figure 1, we plot the recovery error of BP (η = 0)
and of QCBP with η = 0.01 as a function of m/N for Fourier and
Gaussian random measurements.

III. ROBUST RECOVERY GUARANTEES

The goal of this work is to establish robust recovery guarantees
for QCBP (and BP) under the regime

‖n‖2 ≥ η. (5)

In this scenario, recovery estimates analogous to (4)–where η is
replaced by ‖n‖2–hold for BP [11]. They are based on the so-called
quotient property, which is known to be fulfilled only by random
Gaussian matrices [20] and by Weibull matrices [12], under suitable
restrictions on the number of measurements m.

In this work, we prove robust recovery error estimates for QCBP
(and BP) when the matrix A is built by random sampling in
bounded orthonormal systems [14] (this framework includes, e.g., the
partial discrete Fourier transform, the nonharmonic Fourier transform,
and subsampled isometries). In particular, under suitable hypotheses
involving the restricted isometry constants and the singular values of
A, we provide recovery error estimates in probability of the form

‖x− x̂‖2 .
σs(x)1√

s
+ η + log2(N)max {‖n‖2 − η, 0} . (6)

The effect of the unknown error n is encapsulated in the third term
on the right-hand side (compare with (4)). As is to be expected, this
term approaches zero as the estimation of the model error η improves.

The main tool employed in our analysis is the theory of asymptotic
estimates for the singular values of random matrices with heavy-
tailed rows [19]. In particular, a key role is played by the following
incoherence parameter

µ := E
[
max
i∈[m]

∑
k∈[m]\{i}

|〈ai,ak〉|2
]
, (7)

where [m] := {1, . . . ,m} and ai are the rows of A.
Finally, we discuss extensions and applications of this analysis.

First, the case of weighted `1-minimization. This is used notably in
high-dimensional function approximation and interpolation [2], [15],
[17], with applications in uncertainty quantification for parametric
PDEs. Second, fast methods for non-Cartesian MRI, where model
error arises from gridding non-uniform Fourier data to a uniform
grid, and can seriously hamper reconstruction quality [3], [13]. See
Figure 2 for an illustration. Third, low-rank matrix recovery.
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Fig. 1. Numerical assessment of BP (η = 0) and QCBP (with η = 0.01)
for Fourier and Gaussian measurements corrupted by noise n of magnitude
‖n‖2 = 0.01. The solution x is a randomly generated 10-sparse vector in
C1000. The absolute error ‖x − x̂‖2 is plotted as a function of the ratio
m/N . The results are produced using the MATLAB package SPGL1 [18].
The QCBP solver, where relation (3) holds, is very robust for both Fourier
and Gaussian measurements. On the contrary, for BP, where relation (3) does
not hold anymore, the situation is different: the solver’s performance highly
depends on the type of measurements and on the ratio m/N . Notably, Fourier
measurements, coming from randomly subsampling the rows of the DFT
matrix, are much more stable in the BP case when m/N → 1 than Gaussian
measurements.
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Fig. 2. The effect of gridding error on non-Cartesian MRI. A 128 × 128
resolution phantom is sampled using a rosette sampling trajectory (top left)
giving m = 5001 non-Cartesian Fourier measurements. Upfront gridding of
the data is performed, and then the images are recovered using total variation
minimization. Top right: recovered image using standard nearest neighbor
gridding. The signal-to-error ratio is SER = 7.91dB. Bottom row: recovered
image using the novel fractional integer nearest neighbor gridding introduced
in [3] with parameter nup = 2 (left) and nup = 4 (right). The signal-to-
error ratios are SER = 11.34dB and SER = 12.0dB respectively. Standard
gridding leads to O(1) model error. The fractional nearest neighbor gridding
has O(1/nup) model error.
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